Last name _	
First name	

LARSON—MATH 353–CLASSROOM WORKSHEET 24 $x=n^2+1$ Primes Property Conjectures Investigation.

Set up.

- 1. Start the Chrome browser.
- 2. Go to https://cocalc.com
- 3. Log in to your account.
- 4. You should see an existing Project for our class. Click on that.
- 5. Make sure you are in your Home directory (if you put files in the Handouts directory they could be overwritten.)
- 6. Click "New", then "Jupyter Notebook", then call it 353-c24.
- 7. Make sure you have SAGE as the kernel.
- 8. Look in your Home directory. You should see a conjecturing.py file and an expressions file AND today's Jupyter notebook.
- 9. Copy the latest version of number_theory.sage from the Handouts directory to your Home directory.
- 10. load("number_theory.sage").

Review

- 1. The **research question** is: are the infinitely many primes of the form $x = n^2 + 1$?
- 2. What is a *property* in mathematics?
- 3. What is a *necessary condition* in mathematics?
- 4. What is a *sufficient condition* in mathematics?

Idea: Can we develop a theory for which $x = n^2 + 1$ integers are prime (that is, have the *property* of being prime?) Maybe generating necessary (and sufficient) condition conjectures for being prime will advance this idea?

1. The currently coded (and loaded) properties are:

```
properties = [is_prime, is_even, is_odd, is_abundant, is_deficient, is_perfect, is_abundant_base, is_deficient_base, is_perfect_base, is_semiprime, is_semiprime_base, count_divisors_base_less_largest_prime_base, radical_base_less_euler_phi_base, count_divisors_base_less_smallest_prime_base, smallest_prime_less_euler_phi_base, smallest_prime_less_count_prime_divisors, smallest_prime_less_count_prime_divisors_base, euler_phi_base_less_sigma_base, count_divisors_base_less_euler_phi_base, largest_prime_base_less_euler_phi_base, radical_base_less_divisors_base radical_base_less_sigma_base]
```

- 2. What are these integer properties? What do they mean? When are they true?
- 3. Try this necessary condition run. Are the conjectures true? Can you find any counterexamples?

```
objects = [5, 17, 65, 901, 325, 170, 2210, 101, 4625, 197, 1025, 4357,
     2, 10610]
properties = [is_prime, is_even, is_odd, is_abundant, is_deficient,
4 is_perfect, is_abundant_base, is_deficient_base, is_perfect_base,
5 is_semiprime, is_semiprime_base,
     count divisors base less largest prime base,
     radical_base_less_euler_phi_base,
     count_divisors_base_less_smallest_prime_base,
     smallest_prime_less_euler_phi_base,
     smallest_prime_less_count_prime_divisors,
     smallest_prime_less_count_prime_divisors_base,
     euler_phi_base_less_sigma_base,
     count_divisors_base_less_euler_phi_base,
     largest_prime_base_less_divisors_base,
     largest_prime_base_less_euler_phi_base,
     radical_base_less_divisors_base, radical_base_less_sigma_base]
prop_of_interest = properties.index(is_prime)
9 theorems = [is_deficient, not_semiprime]
ni conjs = propertyBasedConjecture(objects, properties, prop_of_interest,
    theory = theorems, sufficient = False, debug=True, time=20)
13 for conj in conjs:
print (conj)
```

- 4. Switch the "sufficient" parameter to True, remove the necessary condition theorems, and generate sufficient condition conjectures for $x = n^2 + 1$ integers to be prime.
- 5. What other integer properties can we find (from the internet, papers, books, ChatGPT, etc (that we might add to get better conjectures)?

Getting your classwork recorded

When you are done, before you leave class...

- 1. Click the "Print" menu choice (under "File") and make a pdf of this worksheet (html is OK too).
- 2. Send me an email (clarson@vcu.edu) with an informative header like "Math 353 c24 worksheet attached" (so that it will be properly recorded).
- 3. Remember to attach today's classroom worksheet!