
Last name
First name
LARSON—MATH 353–CLASSROOM WORKSHEET 21 Multiplicative Functions & Primitive Roots.
Review
1. (Theorem 2.2.2, Chinese Remainder Theorem). Let $a,b\in\mathbb{Z}$ and $n,m\in\mathbb{N}$ such that $\gcd(n,m)=1$. Then there exists $x\in\mathbb{Z}$ such that
$x \equiv a \mod m$,
$x \equiv b \mod n$.
Moreover x is unique modulo mn .
Multiplicative functions
1. What is a multiplicative function?
2. Is Euler's ϕ function multiplicative?

Primitive Roots

3. We proved that, if an integer p is prime, then $\mathbb{Z}/p\mathbb{Z}$ is a field. If an integer n > 1 is not prime, can $\mathbb{Z}/n\mathbb{Z}$ be a field?

4. What is a *primitive root* in $\mathbb{Z}/n\mathbb{Z}$ (for integer n > 1)?

