Last name	
First name	

LARSON—MATH 353-CLASSROOM WORKSHEET 19 Chinese Remainder Theorem.

Review

- 1. (**Proposition 2.1.22, Wilson's Theorem**). An integer p > 1 is prime if and only if $(p-1)! \equiv -1 \mod p$.
- 2. Algorithm 2.3.7 (Extended Euclidean Algorithm) Suppose a and b are integers and let g = gcd(a, b). This algorithm finds g, x and y such that ax + by = g.
- 3. Algorithm 2.3.8 (Inverse Modulo n). Suppose a and n are integers and gcd(a, n) = 1. This algorithm finds an x such that $ax \equiv 1 \mod n$.
- 4. **Resolved claim:** For an integer $x \ge 2$, the number of distinct prime factors of x is no more than $\frac{1}{2}$ the number of divisors of x.

New

Open Conjectures

1. Have these been resolved?

```
count_prime_divisors(x) <= digits10(x)
count_prime_divisors(x) <= ceil(sqrt(count_divisors(x)))</pre>
```

Chinese Remainder Theorem

2. Does this system have a solution?

 $x \equiv 2 \mod 3$

 $x \equiv 3 \mod 5$

(Theorem 2	2.2.2, Chin	ese Remainder	${\bf Theorem}).$	Let $a, b \in \mathbb{Z}$	and $n, m \in \mathbb{N}$
such that gco	d(n,m) = 1.	Then there exists	$s x \in \mathbb{Z} \text{ such t}$	that	

$$x \equiv a \mod m$$
,

$$x \equiv b \mod n$$
.

Moreover x is unique modulo mn.

3. Why is the Chinese Remainder Theorem true?

4. Does this system have a solution?

$$x \equiv 2 \mod 3$$

$$x \equiv 3 \mod 5$$

$$x \equiv 2 \mod 7$$

Multiplicative functions

5. What is a multiplicative function?

6. Is Euler's ϕ function multiplicative?