Last name

First name

LARSON—MATH 353-CLASSROOM WORKSHEET 17
n? + 1 Primes Investigation.

1. Sign in to your CoCalc account.

(a) Start the Chrome browser.

(b) Gotohttps://cocalc.com

(¢) Log in to your account.

(d) You should see an existing Project for our class. Click on that.

(e) Make sure you are in your Home directory (if you put files in the Handouts directory
they could be overwritten.)

(f) Click “New”, then “Jupyter Notebook™, then call it 353-¢17.
(g) Make sure you have SAGE as the kernel.

(h) Look in your Home directory. You should see a conjecturing.py file and an
expressions file AND today’s Jupyter notebook.

Review

2. We need conjecturing.py loaded for our investigation. I added the command to
the number_theory.sage file. Every time that file is loaded, the Conjecturing
program will get loaded too.

3. Open Conjectures.

count_prime_divisors(x) <= digitslO0 (x)
count_prime_divisors (x) <= 1/2+count_divisors (x)
count_prime_divisors (x) <= count_divisors(x) - 1
count_prime_divisors(x) >= digitslO(x) - 1
count_prime_divisors(x) >= (1/digitsl0(x))

Are any of these resolved?
Experiments

The question is: are the infinitely many primes of the form n? + 1?

4. To use the Conjecturing program, we’ll need some invariants. The ones we’ve coded
in class are in the number _theory.sage file in your Handouts folder. We don’t want to keep
re-coding those. We can use this file as a permanent record of everything we’ve coded for
this research. Copy or move this file to your Home directory.



&)

IS

. We started with a few prime and non-prime integers of the form n? + 1.

#lets try to make conjectures using a *fewx of the numbers from N
#lets get a couple primes and non-primes
; objects = [5,17,65,901, 325]

5 #need invariants for integers
invariants = [digitsl0, digits2, count_divisors, count_prime_divisors,
number, euler_phi]

s #maybe count_prime_divisors is worth investigating
#Note: this invariant is 1 for primes and bigger than 1 for non-primes

invariant_of interest = invariants.index(count_prime_divisors)

3 conjs = conjecture(objects, invariants, invariant_of_ interest, upperBound
= True, debug=True)

for conj in conjs:
print (conj)

. How should we proceed? Here are 2 new ideas: (1) we can add theorems using the (op-
tional) t heory parameter for the conjecture procedure; and (2) we can add new invariants.

. If it is true, for instance, that for any n = | integer that

count_prime_divisors (x) <= 1/2+xcount_divisors (x) is true, we can de-
fine that upper bound using a procedure-name, and then adding that theorem to a list of
theorems that we can input to the program:

def half count_divisors(x):
return (1/2)*count_divisors (x)

theorems = [half count_divisors]

conjs = conjecture(objects, invariants, invariant_of_ interest,
upperBound = True, theory = theorems, debug = True)

. Here’s an idea for new invariants. For any n = z? + 1 integer, we can also grab onto the
x and define any invariants for that integer. These are also invariants for x. There are no
wrong invariants—and also you can’t tell ahead of time what invariants will show up in
useful conjectures.

Let’s define these, add them to our invariants list, and then re-run con jecture.



objects
X
invariants/properties theory

~— — —

a < fa(Bi,...
a < f3(B,...

. - - pTOOf ) S ‘f(lal’..')

new objects conjectures theorems

Getting your classwork recorded
When you are done, before you leave class...

1. Click the “Print” menu choice (under “File”) and make a pdf of this worksheet (html is OK
t00).

2. Send me an email (clarson@vcu.edu) with an informative header like
“Math 353 - c17 worksheet attached” (so that it will be properly recorded).

3. Remember to attach today’s classroom worksheet!



