Last name	
First name	

LARSON—MATH 353–CLASSROOM WORKSHEET 16 $\mathbb{Z}/n\mathbb{Z}$ —Integers mod n.

Review

- 1. (**Definition 2.1.16, Order of an Element**). Let $n \in \mathbb{N}$ and $x \in \mathbb{Z}$ and suppose that gcd(x,n)=1. The order of x modulo n is the smallest $m \in \mathbb{N}$ such that $x^m \equiv 1 \mod n$.
- 2. (**Theorem 2.1.20, Euler's Theorem**). If gcd(x, n) = 1, then $x^{\phi(n)} \equiv 1 \mod n$.

New

(**Proposition 2.1.22, Wilson's Theorem**). An integer p > 1 is prime if and only if $(p-1)! \equiv -1 \mod p$.

1. What are examples?

2. Why is Wilson's Theorem true?

3. Why does Wilson's theorem give a "bad" algorithm for primality testing?

	Algorithm 2.3.7 (Extended Euclidean Algorithm) Suppose a and b are integers and let $g = gcd(a, b)$. This algorithm finds g , x and y such that $ax + by = g$.
4.	Apply the Extended Euclidean Algorithm to find $\gcd(12,47)$ as a linear combination of 12 and 47.

Algorithm 2.3.8 (Inverse Modulo n). Suppose a and n are integers and gcd(a, n) = 1. This algorithm finds an x such that $ax \equiv 1 \mod n$.

5. Apply this algorithm to find the multiplicative inverse of 12 mod 47.

Open Conjectures

6. Claim: For an integer $x \geq 2$, the number of distinct prime factors of x is no more than $\frac{1}{2}$ the number of divisors of x.

Chinese Remainder Theorem

7. Does this system have a solution?

 $x \equiv 2 \mod 3$

 $x \equiv 3 \mod 5$