Last name _	
First name	

LARSON—MATH 353–CLASSROOM WORKSHEET 15 $n^2 + 1$ Primes Investigation.

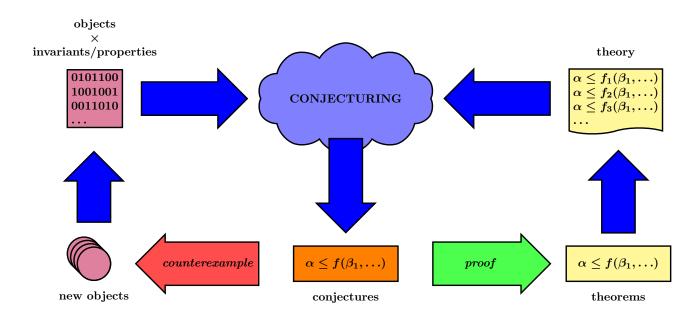
- 1. Sign in to your CoCalc account.
 - (a) Start the Chrome browser.
 - (b) Go to https://cocalc.com
 - (c) Log in to your account.
 - (d) You should see an existing Project for our class. Click on that.
 - (e) Make sure you are in your Home directory (if you put files in the Handouts directory they could be overwritten.)
 - (f) Click "New", then "Jupyter Notebook", then call it **353-c15**.
 - (g) Make sure you have SAGE as the kernel.
 - (h) Look in your Home directory. You should see a conjecturing.py file and an expressions file AND today's Jupyter notebook.

Review

- 2. We wanted some data. We made a list L with all the primes up to 1000. How did we do that? I added this work to our number_theory.py file. We don't want to use all these when we produce conjectures (so that we have simpler conjectures and less overfitting), but we can use them to check if a given conjecture is true.
- 3. We need conjecturing.py loaded for our investigation. I added the command to the number_theory.py file. Every time that file is loaded, the Conjecturing program will get loaded too.
- 4. Open Conjectures.

```
count_prime_divisors(x) <= digits10(x)
count_prime_divisors(x) <= 1/2*count_divisors(x)
count_prime_divisors(x) <= count_divisors(x) - 1
count_prime_divisors(x) >= digits10(x) - 1
count_prime_divisors(x) >= (1/digits10(x))
```

Are any of these resolved?


Experiments

The **question** is: are the infinitely many primes of the form $n^2 + 1$?

5. To use the Conjecturing program, we'll need some *invariants*. The ones we've coded in class are in the *number_theory.sage* file in your Handouts folder. We don't want to keep re-coding those. We can use this file as a permanent record of everything we've coded for this research. Copy or move this file to your Home directory

6. We started with a few prime and non-prime integers of the form $n^2 + 1$. We found 901 and 325 were counterexamples to conjectures, and added those. Here is where we are:

7. How should we proceed?

Getting your classwork recorded

When you are done, before you leave class...

- 1. Click the "Print" menu choice (under "File") and make a pdf of this worksheet (html is OK too).
- 2. Send me an email (clarson@vcu.edu) with an informative header like "Math 353 c15 worksheet attached" (so that it will be properly recorded).
- 3. Remember to attach today's classroom worksheet!