Last name _	
First name	

LARSON—MATH 353–CLASSROOM WORKSHEET 12 $\mathbb{Z}/n\mathbb{Z}$ —Integers mod n.

Review

- 1. (Proposition 2.1.10, Cancellation). If gcd(c, n) = 1 and $ac \equiv bc \mod n$, then $a \equiv b \mod n$.
- 2. (**Definition 2.1.11, Complete Set of Residues**). We call a subset $R \subseteq \mathbb{Z}$ of size n whose reductions modulo n are pairwise distinct a complete set of residues modulo n. In other words, a complete set of residues is a choice of representative for each equivalence class in $\mathbb{Z}/n\mathbb{Z}$.
- 3. What are examples of complete sets of residues?
- 4. (**Lemma 2.1.12**). If R is a complete set of residues modulo n and $a \in \mathbb{Z}$ with gcd(a, n) = 1, then $aR = \{ax : x \in R\}$ is also a complete set of residues modulo n.

New

(**Proposition 2.1.13, Units**). If gcd(a, n) = 1, then the equation $ax \equiv b \mod n$ has a solution, and that solution is unique modulo n.

1. Why is Prop. 2.1.13 true?

(**Proposition 2.1.15, Solvability**). The equation $ax \equiv b \mod n$ has a solution if and only if gcd(a, n) divides b.

2. Why is Prop. 2.1.15 true?

(**Definition 2.1.16, Order of an Element**). Let $n \in \mathbb{N}$ and $x \in \mathbb{Z}$ and suppose that gcd(x, n) = 1. The order of x modulo n is the smallest $m \in \mathbb{N}$ such that $x^m \equiv 1 \mod n$.

3. What are examples?

(**Theorem 2.1.20, Euler's Theorem**). If gcd(x, n) = 1, then $x^{\phi(n)} \equiv 1 \mod n$.

4. What are examples?

5. Why is Euler's Theorem true?