
Last name

First name

LARSON—MATH 353–CLASSROOM WORKSHEET 11
Conjecturing in CoCalc/SAGE.

1. Sign in to your CoCalc account.

(a) Start the Chrome browser.

(b) Go to https://cocalc.com

(c) Log in to your account.

(d) You should see an existing Project for our class. Click on that.

(e) Make sure you are in your Home directory (if you put files in the Handouts directory
they could be overwritten.)

(f) Click “New”, then “Jupyter Notebook”, then call it 353-c11.

(g) Make sure you have SAGE as the kernel.

Review: setting up Conjecturing

(a) We set up the conjecturing program by following the steps at:
http://nvcleemp.github.io/conjecturing/

(b) The Conjecturing program .zip file is in your 353-handouts directory.

(c) Move the program to your Home directory.

(d) Click “New” and then “Terminal” to get a Sage terminal window.

(e) ˜$ unzip conjecturing-0.13.zip
˜$ cd conjecturing-0.13
˜/conjecturing-0.13$ make

(f) If you were successful, you have a conjecturing.py file and an expressions
file in your Home directory.

(g) Look in your Home directory. You should see a conjectures.py file and an
expressions file.

Facts about the Produced Conjectures

(1) Truth. They are TRUE for every input object.
(2) Significance. Each conjecture, when added to the list of conjectures, was “better” for
at least one input object than any previously stored conjecture.

2. Code and test each of the following procedures.
1 def digits10(n):
2 return len(n.digits(10))
3

4 def digits2(n):
5 return len(n.digits(2))



1 def count_divisors(n):
2 return len(divisors(n))
3

4 def count_prime_divisors(n):
5 return len(factor(n))
6

7 def number(n):
8 return n

3. Here is a minimal test for generating upper-bound conjectures for an integer n.
1 invariants = [number, digits10, digits2]
2 objects = [2, 3, 10, 147]
3 invariant_of_interest = invariants.index(number)
4 conjectures = conjecture(objects, invariants, invariant_of_interest,

upperBound = True, debug = True)

If a conjecture is true, the only way to be certain is to prove it. If it is false, the only way to
be certain of that is to find an example that demonstrates falsity (a counterexample).

4. What conjectures do you get? (Are they true? If not find a counterexample and add it to
Sage. Then re-run to get new conjectures.)

5. Now generate lower-bound conjectures for an integer n. Are they true?

6. Now let’s expand the included invariants.
1 invariants = [number, digits10, digits2, count_divisors,

count_prime_divisors]
2 objects = [2, 3, 10]
3 invariant_of_interest = invariants.index(number)
4 conjectures = conjecture(objects, invariants, invariant_of_interest,

upperBound = True, debug = True)

7. What conjectures do you get? (Are they true? If not find a counterexample and add it to
Sage. Then re-run to get new conjectures.)

8. We can get better conjectures by adding more integer invariants. What can we add?

Property Conjectures

For integers (or any other object-type) we can conjectures necessary or sufficient conditions
for an integer to have that property.

1 properties = [is_prime, is_even]
2 property_of_interest = properties.index(is_prime)
3 objects = [3]
4 propertyBasedConjecture(objects, properties, property_of_interest)

9. What conjectures do you get? (Are they true? If not find a counterexample and add it to
Sage. Then re-run to get new conjectures.)



Getting your classwork recorded
When you are done, before you leave class...

(a) Click the “Print” menu choice (under “File”) and make a pdf of this worksheet (html
is OK too).

(b) Send me an email (clarson@vcu.edu) with an informative header like
“Math 353 - c11 worksheet attached” (so that it will be properly recorded).

(c) Remember to attach today’s classroom worksheet!


