Last name	
First name	

LARSON—MATH 353–CLASSROOM WORKSHEET 10 $\mathbb{Z}/n\mathbb{Z}$ —Integers mod n.

Review

- 1. What is the Fundamental Theorem of Arithmetic?
- 2. How can we use Euclid's Lemma to prove the Fundamental Theorem of Arithmetic?
- 3. **Def.** If $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, we say that a is congruent to b modulo n if n | (a b), and write $a \equiv b \mod n$.
- 4. What is $n\mathbb{Z}$?
- 5. What is $\mathbb{Z}/n\mathbb{Z}$?

New

(**Proposition 2.1.10, Cancellation)**. If gcd(c, n) = 1 and $ac \equiv bc \mod n$, then $a \equiv b \mod n$.

1. Why is Proposition 2.1.10 true?

(**Definition 2.1.11, Complete Set of Residues**). We call a subset $R \subseteq \mathbb{Z}$ of size n whose reductions modulo n are pairwise distinct a complete set of residues modulo n. In other words, a complete set of residues is a choice of representative for each equivalence class in $\mathbb{Z}/n\mathbb{Z}$.

2. What are examples of complete sets of residues?

(**Lemma 2.1.12**). If R is a complete set of residues modulo n and $a \in \mathbb{Z}$ with gcd(a, n) = 1, then $aR = \{ax : x \in R\}$ is also a complete set of residues modulo n.

