Last name _		
First name		

LARSON—MATH 353-CLASSROOM WORKSHEET 06 Fundamental Theorem of Arithmetic.

Review

- 1. Why does gcd(a, b) = gcd(a, b a)?
- 2. (**Lemma 1.1.10**) Suppose $a, b, n \in \mathbb{Z}$. Then gcd(a, b) = gcd(a, b an). (**Proposition 1.1.11**.) Suppose that a and b are integers with $b \neq 0$. Then there exists unique integers q and r such that $0 \leq r < |b|$ and a = bq + r.

New

(Algorithm 1.1.12. Division Algorithm.) Suppose a and b are integers with $b \neq 0$. This algorithm computes integers q and r such that $0 \leq r < |b|$. and a = bq + r.

1. What is the Division Algorithm? (How can we find q and r)?

2. Why does **Lemma 1.1.10** imply that, for a, b > 0, with unique integers q, r with a = bq + r $(0 \le r < b)$, that gcd(a, b) = gcd(b, r)?

3. How can the Division Algorithm be used to compute gcd(a,b)?

	4. Use the division algorithm repeatedly to compute gcd(2261, 1275).
,	(Theorem 1.1.19. Euclid). Let p be a prime and $a, b \in \mathbb{N}$. If $p ab$ then $p a$ or $p b$ 5. Why is Euclid's Lemma true?
	(Proposition 1.1.20) Every natural number is a product of primes. 6. Why is Proposition 1.1.20 true?
	7. What is the Fundamental Theorem of Arithmetic?
	8. How can we use Euclid's Lemma to prove the Fundamental Theorem of Arithmetic?