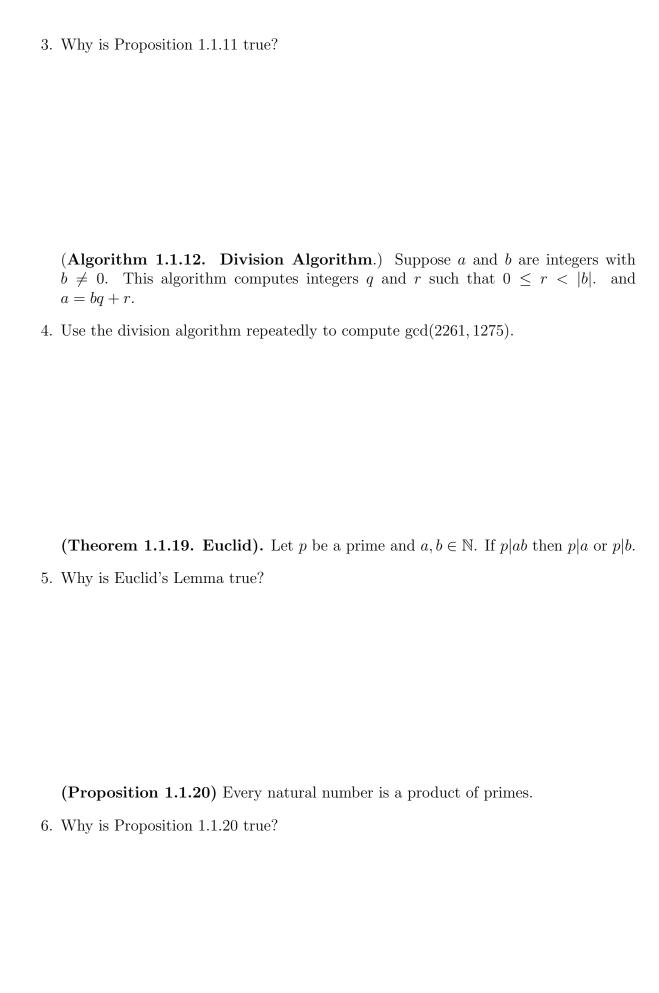
| Last name _ |  |
|-------------|--|
|             |  |
| First name  |  |

## LARSON—MATH 353-CLASSROOM WORKSHEET 04 Primes.

## Review

- 1. What is  $\mathbb{Z}$ ?
- 2. **Def.** If  $a, b \in \mathbb{Z}$  we say that a divides b, written  $a \mid b$ , if ac = b for some  $c \in \mathbb{Z}$ . In this case, we say a is a *divisor* of b. We say that a does not divide b, written  $a \nmid b$ , if there is no  $c \in \mathbb{Z}$  such that ac = b.
- 3. What is a *prime* integer n > 1?
- 4. What is a *composite* integer?
- 5. What is gcd(a, b) for integers a, b?
- 6. Why does gcd(a, b) = gcd(b, a)?
- 7. Why does  $gcd(a, b) = gcd(\pm a, \pm b)$ ?


## New

1. Why does gcd(a, b) = gcd(a, b - a)?

(**Lemma 1.1.10**) Suppose  $a, b, n \in \mathbb{Z}$ . Then gcd(a, b) = gcd(a, b - an).

2. Why is Lemma 1.1.10 true?

(**Proposition 1.1.11**.) Suppose that a and b are integers with  $b \neq 0$ . Then there exists unique integers q and r such that  $0 \leq r < |b|$  and a = bq + r.

