Last name		
First name		

LARSON—MATH 350—CLASSROOM WORKSHEET 25 Geometry and Combinatorics

Review

•	What c	loes it	mean to	r intege	$\operatorname{ers} a$ a	nd b	to	be <i>re</i>	lativel	y prime	

- We are given n numbers from the set $\{1, 2, ..., 2n-1\}$. Prove that we can always find two numbers among these n numbers that are relatively prime to each other.
- How many numbers are there up to 1200 that are relatively prime to 1200?

New

- 1. What does it mean for a figure to be *convex*?
- 2. Draw a convex quadrilateral. How many points of intersection do the diagonals have (inside the figure)?

3. Draw a convex pentagon. How many points of intersection do the diagonals have (inside the figure)?

4.	Draw a convex hexagon. How many points of intersection do the diagonals have (inside the figure, assuming no 3 diagonals meet in the same point)?
5.	Draw a convex 7-gon. How many points of intersection do the diagonals have (inside the figure, assuming no 3 diagonals meet in the same point)?
6.	How many points of intersection do the diagonals of a convex n -gon have (inside the figure, assuming no 3 diagonals meet in the same point)?
	Can we make a conjecture?
	Can we prove it?