Last name _____

First name _____

LARSON—MATH 350—CLASSROOM WORKSHEET 22 Fermat's Theorem

Review

- What does it mean for integer a to *divide* integer b (that is, a|b)?
- What is a *prime* number?
- If a, b are integers and b = aq + r (for integers q, r with $0 \le r < a$), what are q and r called?
- (Claim:) Every positive integer can be written as the product of primes.
- (Claim:) Every positive integer can be written *uniquely* as the product of primes.
- (Claim:) $\sqrt{2}$ is irrational.
- (Claim:) There are infinitely many primes.
- (Claim:) For every positive integer k, there exist k consecutive composite integers. New

We will show that, for any prime p, and any positive integer a, that:

$$p|(a^p-a)|$$

- 1. Check that $p|(a^p a)$ is true for a = 0 and any prime p.
- 2. Check that $p|(a^p a)$ is true for a = 1 and any prime p.
- 3. Let a = 2 and check that $p|(a^p a)$ is true for p = 2.

4. Let a = 2 and check that $p|(a^p - a)$ is true for p = 3.

5. Let a = 2 and check that $p|(a^p - a)$ is true for p = 5.

6. Can you explain why $p|(2^p - 2)$ for any prime p?

7. (Claim:) $p|\binom{p}{k}$ for prime p and any k where 0 < k < p.

8. Now can you explain why $p|(2^p - 2)$ for any prime p?

9. Let's assume that $p|(a^p - a)$ for any prime p and an integer a for a = 0, ..., k. That's our inductive hypothesis. So, what are we assuming exactly?

10. How can we use this to prove $p|(a^p - a)$ for a = k + 1?