LARSON—MATH 310—Homework 13 SVD!

Show all your work.

Let
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$
.

- 1. A is an $m \times n$ matrix. Find m and n and the rank r of A.
- 2. Find $A^T A$.
- 3. Check that the rank of $A^T A$ is the same as the rank r of A.
- 4. Find the eigenvalues of $A^T A$. There will be r positive eigenvalues: $\sigma_1^2, \ldots, \sigma_r^2$. (Arrange these so $\sigma_1^2 \ge \sigma_2^2 \ge \ldots \ge \sigma_r^2$).
- 5. Find the singular values $\sigma_1, \ldots, \sigma_r$.
- 6. Find the corresponding eigenvectors for the r positive eigenvalues of $A^T A$ and normalize them. Call these: $\vec{v_1}, \ldots, \vec{v_r}$.
- 7. Check that your eigenvalue-eigenvector pairs work.
- 8. The eigenvectors corresponding to the 0-eigenvalues of $A^T A$ are a basis for the null space of $A^T A$. They might not be orthogonal. Use Gram-Schmidt to convert these to an orthogonal (actually, orthonormal) basis for the null space of $A^T A$. Call these v_{r+1}, \ldots, v_n .
- 9. What is an *orthogonal* matrix?
- 10. Let $V = [v_1 \dots v_r \dots v_n]$, check that V is $n \times n$, and show that V is orthogonal.
- 11. For each $i \in \{1, ..., r\}$, find $||A\vec{v_i}||$.
- 12. Let Σ be the $m \times n$ matrix with the σ_i 's on the diagonal for $i = 1, \ldots, r$, and 0 for every other entry. Find Σ .
- 13. Find AA^T .
- 14. Check that the rank of AA^T is the same as the rank r of A.
- 15. Find the eigenvalues of AA^T . Call the positive ones: $\sigma_1^2, \ldots, \sigma_r^2$.
- 16. Find the corresponding eigenvectors for the eigenvalues of AA^T and normalize them. Call the eigenvectors corresponding to the r positive eigenvalues: $\vec{u_1}, \ldots, \vec{u_r}$.
- 17. Check that your eigenvalue-eigenvector pairs work.
- 18. The eigenvectors corresponding to the 0-eigenvalues of AA^T are the null space of AA^T . We want an orthogonal basis. Find any basis and use Gram-Schmidt to convert these to an orthogonal (actually, orthonormal) basis for the null space of AA^T . Call these v_{r+1}, \ldots, v_n .
- 19. Let $U = [u_1 \dots u_r \dots u_m]$, check that U is $m \times m$, and show that U is orthogonal.
- 20. For each $i = 1, \ldots, r$, show that $A\vec{v_i} = \sigma_i \vec{u_i}$.