Last name	
First name	

LARSON—MATH 310–HOMEWORK WORKSHEET 10 Linear Dependence.

General Instructions

- 1. Write up a **neat** assignment on a **new sheet** of paper. (Do not cram your answers between the lines).
- 2. **Number** your problems so that it is easy to see what work matches the assigned problems.
- 3. Remember to **give examples** (you do not understand a concept unless you can provide an example of it).

Problems

- 1. Define what it means for a collection of vectors to be **linearly dependent**, and give an example. Explain.
- 2. Define what it means for a collection of vectors to be **linearly independent**, and give an example. Explain.
- 3. From our text:

Problem 5.14.1: Let $\mathcal{V} = \text{Span } \{[2,0,4,0],[0,1,0,1],[0,0,-1,-1]\}$. For each of the following vectors, show it belongs to \mathcal{V} by writing it as a linear combination of the generators of \mathcal{V} .

[2, 1, 4, 1]

4. From our text:

Problem 5.14.5: For each of the parts below, show the given vectors over \mathbb{R} are linearly dependent by writing the zero vector as a nontrivial linear combination of the vectors.

- (a) [1,2,0],[2,4,1],[0,0,-1]
- (b) [2, 4, 0], [8, 16, 4], [0, 0, 7]
- (c) [0,0,5],[1,34,2],[123,456,789],[-3,-6,0],[1,2,0.5]
- 5. From our text:

Problem 5.14.7: Show that one of the vectors is superfluous by expressing it as a linear combination of the other two.

$$\mathbf{u} = [3, 9, 6, 5, 5]$$

 $\mathbf{v} = [4, 10, 6, 6, 8]$
 $\mathbf{w} = [1, 1, 0, 1, 3]$