Last name

First name

LARSON—MATH 310-HOMEWORK WORKSHEET 08
Vector and Matrix Applications.

1. Start the Chrome browser.

2. Gotohttps://cocalc.com

3. Login.

4. You should see an existing Project for our class. Click on that.

5. Copy the folder CodingTheMatrix—fixed to your Home directory. This has the new
version of solver.

6. Make sure you are in your own CodingTheMatrix—fixed directory (if you work in
the Handouts directory version, your work could get overwritten).

7. Click “New”, then “Jupyter Notebook”, then call it 310-h08. This file should be in your
CodingTheMatrix—fixed directory.

8. Make sure you have PYTHON as the kernel.

Annotate your Jupyter notebook cells so that it is clear to anyone what problem your work
corresponds to.

1. We need to import various modules/libraries.

1 from solver import *
> from GF2 import =*

3 from vec import =«

4 from matutil import =*

2. Make the vectors, domain D, and linear combination in the following example.

Example 3.1.6: Products and resources: The JunkCo factory makes things using five re-
sources: metal, concrete, plastic, water, and electricity. Let D be this set of resources. The
factory has the ability to make five different products.

Here is a fabricated table that shows how much of each resource is used in making each product,
on a per-item basis:

metal concrete plastic water electricity
garden gnome 0 1.3 2 8 4
hula hoop 0 0 1.5 4 3
slinky .25 0 0 2 7
silly putty 0 0 3 T 5
salad shooter .15 0 5 4 8

The i** product’s resource utilization is stored in a D-vector v; over R. For example, a gnome
is represented by

Ugnome = Vec(D,{'concrete':1.3, 'plastic’':.2, 'water':.8, 'electricity':.4})

Suppose the factory plans to make ognome garden gnomes, cnoop hula hoops, ayjinky slinkies,
Qputty Silly putties, and agpooter Salad shooters. The total resource utilization is expressed as a
linear combination

CQtgnome Vgnome + Chaop Vhoop T Xslinky Vslinky T Xputty Vputty T (shooter Ushooter

For example, suppose JunkCo decides to make 240 gnomes, 55 hoops, 150 slinkies, 133 putties,
and 90 shooters. Here's how the linear combination can be written in Python using our Vec
class:

>>> D = {'metal', 'concrete', 'plastic', 'water','electricity'}

>>> v_gnome = Vec(D,{'concrete':1.3,'plastic':.2, 'water':.8, 'electricity':.4})
>>> v_hoop = Vec(D, {'plastic':1.5, 'water':.4, 'electricity':.3})

>>> v_slinky = Vec(D, {'metal':.25, 'water':.2, 'electricity':.T7})

>>> v_putty = Vec(D, {'plastic':.3, 'water':.7, 'electricity':.5})

>>> v_shooter = Vec(D, {'metal':.15, 'plastic':.5, 'water':.4,'electricity':.8}

>>> print(240%v_gnome + bb*v_hoop + 160*v_slinky + 133#v_putty + 90%v_shooter)

3. Make the row dictionary, corresponding matrix // and print it, in the next problem.

4. Then, from the same problem, make the vector @ and vector-matrix product u * M.

Example 4.5.10: In Section 3.1.2, we gave examples of applications of linear combinations.
Recall the JunkCo factory data table from Example 3.1.6 (Page 145):

metal concrete plastic water electricity
garden gnome 0 13 2 .8 4
hula hoop 0 0 15 A 3
slinky .25 0 0 2 T
silly putty 0 0 3 T 5
salad shooter 15 0 5 4 .8

Corresponding to each product is a vector. In Example 3.1.6 (Page 145), we defined the
vectors
v_gnome, v_hoop, v_slinky, v_putty, and v_shooter,
each with domain
{’metal’,’concrete’,’plastic’,’water’,’electricity’}
We can construct a matrix M whose rows are these vectors:

>>> rowdict = {'gnome':v_gnome, 'hoop':v_hoop, 'slinky':v_slinky,
'putty':v_putty, 'shooter':v_shooter}

>>> M = rowdict2mat(rowdict)

>>> print (M)

plastic metal concrete water electricity

putty | 0.3 0 0 0.7 0.5
gnome | 0.2 0 1.3 0.8 0.4
slinky | 0 0.25 0 0.2 0.7
hoop | 1.5 0 0 0.4 0.3
shooter | 0.5 0.15 0 0.4 0.8

In that example, JunkCo decided on quantities cgnomes Othoops Xslinkys Xputtys Oshooter fOr the prod-
ucts. We saw that the the vector giving the total utilization of each resource, a vector whose
domain is {metal, concrete, plastic, water, electricity}, is a linear combination of the rows of
the table where the coefficient for product p is a,.

We can obtain the total-utilization vector as a vector-matrix product

[agnomea Choops Mslinky s Xputtys C‘%hoc:tear] * M (4 1)

Here's how we can compute the total utilization in Python using vector-matrix multiplication.
Note the use of the asterisk * as the multiplication operator.

>>> R
>>> 1

{'gnome', 'hoop', 'slinky', 'putty', 'shooter'}
Vec(R, {'putty':133, 'gnome':240, 'slinky':150, 'hoop':55,
'shooter':90})

>>> print (uxM)

plastic metal concrete water electricity

5. Now we can use/test the solve procedure!

Example 4.5.15: We use solve(A,b) to solve the industrial espionage problem. Suppose
we observe that JunkCo uses 51 units of metal, 312 units of concrete, 215 units of plastic,
373.1 units of water, and 356 units of electricity. We represent these observations by a vector b:

>>> C
>>> b

{'metal', 'concrete', 'plastic', 'water','electricity'}
Vec(C, {'water':373.1,'concrete':312.0, 'plastic':215.4,
'metal':51.0, 'electricity':356.0})

We want to solve the vector-matrix equation = * M = b where M is the matrix defined in
Example 4.5.10 (Page 196). Since solve(A,b) solves a matrix-vector equation, we supply the
transpose of M as the first argument A:

>>> solution = solve(M.transpose(), b)

6. Now test your solution vector.

>>> print(solution)

putty gnome slinky hoop shooter

Does this vector solve the equation? We can test it by computing the residual vector (often
called the residual):

>>> residual = b - solution*M

If the solution were exact, the residual would be the zero vector. An easy way to see if the
residual is almost the zero vector is to calculate the sum of squares of its entries, which is just
its dot-product with itself:

>>> residual * residual
1.819555009546577e-25

About 1023, so zero for our purposes!
However, we cannot yet truly be confident we have penetrated the secrets of JunkCo. Perhaps
the solution we have computed is not the only solution to the equation! More on this topic later.

Getting your homework recorded
When you are done,

1. Click the “Print” menu choice (under “File””) and make a pdf of this worksheet (html is OK
t0o).

2. Send me an email (clarson@vcu.edu) with an informative header like
“Math 310 - hO8 worksheet attached” (so that it will be properly recorded).

3. Remember to attach your homework worksheet!

