LARSON—MATH 310—Homework 7 Test 1 REVIEW

Write up answers a complete and detailed test review. That's due at test time.

Definitions. Define each concept and give an example.

- 1. *linear combination* of vectors.
- 2. square matrix.
- 3. symmetric matrix.
- 4. transpose of a matrix A.
- 5. inverse A^{-1} of a matrix A.
- 6. \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n .
- 7. vector space.
- 8. column space C(A) of a matrix A.
- 9. row space $C(A^T)$ of a matrix A.
- 10. null space N(A) of a matrix A.

Problems. Explain your answers.

- 1. Write this system in the matrix form $A\vec{x} = \vec{b}$.
 - x + y + z = 7x + y z = 5x y + z = 3
- 2. Find all solutions of this system.
- 3. Let $\vec{v} = \begin{bmatrix} 3\\2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1\\-1 \end{bmatrix}$. Find $\vec{v} \cdot \vec{w}$.
- 4. Find $||\vec{v}||$.
- 5. Find a unit vector \vec{u} in the same direction as \vec{v} .
- 6. Find the angle between \vec{v} and \vec{w} .
- 7. Find a vector \vec{u} which is perpendicular to \vec{v} .
- 8. Write $\begin{bmatrix} 0\\5 \end{bmatrix}$ as a linear combination of \vec{v} and \vec{w} .

9. Find
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

10. Let $\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$. Check if \vec{u}, \vec{v} , and \vec{w} are co-planar? Explain.

- 11. Find a 3×3 elimination matrix E which adds (one times) the second row to the third row of a matrix A.
- 12. Find a 3×3 elimination matrix E which adds -2 times the first row to the third row.
- 13. Let $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$, and $B = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$. Find AB.
- 14. Find:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 5 & -1 & 5 \end{bmatrix}$$

15. Write the augmented matrix corresponding to the following system.

- 16. Use Gaussian Elimination (row operations on matrices of coefficients) to solve the above system. Clearly indicate your row operations.
- 17. Let

$$E_{13} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Find the inverse of E_{13} .

- 18. Find a 3×3 matrix P where (left) multiplication of A by P reverses the first and third rows of A.
- 19. Find the inverse of P.

20. Let
$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
. Find the inverse of D .
21. Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$. Find an LU-factorization of A .
22. Let $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 5 \end{bmatrix}$. Find an LU-factorization of A .

23. Let
$$A = \begin{bmatrix} 1 & 9 \\ 0 & 3 \end{bmatrix}$$
. Find A^T , A^{-1} , $(A^T)^{-1}$ (if they exist).
24. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. Find A^T , A^{-1} , $(A^T)^{-1}$ (if they exist).
25. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. Find A^T , A^{-1} , $(A^T)^{-1}$ (if they exist).
26. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 7 \end{bmatrix}$. Find A^T , A^{-1} , $(A^T)^{-1}$ (if they exist).
27. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. and $\vec{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$. Find $\vec{v}^T A^T$.
28. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. Find $A^T A$.
29. Find AA^T .
30. Explain why $A^T A$ is always symmetric.

- 31. Explain why every vector \vec{v} in the null space of a matrix A is orthogonal to every row $\vec{\rho}$ of A.
- 32. Define the column space of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$.
- 33. Define the row space of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$.
- 34. Find a vector \vec{v} in \mathbb{R}^3 that is *not* in the row space of A.
- 35. Find the null space of A. Let

$$A = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 1 & 2 & 2 & 5 \\ 1 & 3 & 2 & 6 \end{bmatrix}.$$

- 36. Find the row-reduced echelon form (RREF) for A.
- 37. What is the rank of A?