Last name	
First name	

LARSON—MATH 310-HOMEWORK WORKSHEET 06 Test 1 Review.

General Instructions

- 1. You should know the following definitions, and corresponding examples, for the test. Write out careful definitions and problem solutions. Turn these in at test time.
- 2. Write up a **neat** assignment on a **new sheet** of paper. (Do not cram your answers between the lines).
- 3. **Number** your problems so that it is easy to see what work matches the assigned problems.
- 4. Remember to **give examples** (you do not understand a concept unless you can provide an example of it).

Definitions. Write each definition and give an example.

- 1. What is a *set*?
- 2. What is a *subset* of a set? (What does $S_1 \subseteq S_2$ mean?)
- 3. What is the Cartesian product of sets S_1 and S_2 ?
- 4. What is a function? (What does $f: D \to F$ mean?)
- 5. What is a *field*?
- 6. What are the *complex numbers*?
- 7. Why does any non-zero complex numbers a + bj have a multiplicative inverse?
- 8. What is a vector?
- 9. What are examples of *n*-vectors?
- 10. What are examples of *D*-vectors?
- 11. What is the *conjugate* of a complex number a + bj?
- 12. What is the *absolute value* of a complex number a + bj?
- 13. Give an example of a *D*-vector which uses pairs for its domain.
- 14. What is the definition for adding n-vectors?
- 15. What is the definition for multiplication of an n-vector by a scalar?
- 16. What is the *dot product* of two *n*-vectors?

- 17. Why is the dot product of n-vectors commutative?
- 18. What is a *linear combination* of vectors $\hat{v_1}, \dots, \hat{v_n}$?
- 19. What is a *convex combination* of vectors?
- 20. What is the *span* of vectors $\hat{v_1}, \dots, \hat{v_n}$?
- 21. Let \mathcal{V} be a set of vectors. What is a *generating set* of vectors for \mathcal{V} ?
- 22. What is \mathbb{R}^n ?
- 23. What are the *standard* generators for \mathbb{R}^n ?
- 24. What is a *vector space*? Give a definition and an example.
- 25. What is a *subspace*? Give a definition and an example.
- 26. What is the *span* of vectors? Give a definition and an example.
- 27. What are *standard generators*? Give a definition and an example.
- 28. What is a *homogeneous linear system*? Give a definition and an example.

Problems

- 29. What is the geometric interpretation of 2-vector addition? Explain and give an example.
- 30. What is scalar-vector multiplication? Explain and give an example for 2-vectors.
- 31. For vectors $\hat{v} = [-1, 3]$ and $\hat{u} = [0, 4]$, find the vectors $3\hat{v}$, $2\hat{v}$, and $3\hat{v} 2\hat{u}$. Draw $3\hat{v}$, $2\hat{v}$, and $3\hat{v} 2\hat{u}$ as arrows on the same coordinate system.
- 32. Let a, b be real numbers. Consider the equation z = ax + by. Show that there are two 3-vectors $\hat{v_1}$, $\hat{v_2}$ such that the set of points [x, y, z] satisfying the equation is exactly the set of linear combinations of $\hat{v_1}$ and $\hat{v_2}$.
- 33. Consider the equation z = 3x + 4y + 5. Show that there are three 3-vectors $\hat{v_0}$, $\hat{v_1}$, $\hat{v_2}$ such that the set of points [x, y, z] satisfying the equation is exactly $\{\hat{v_0} + \alpha_1\hat{v_1} + \alpha_2\hat{v_2} : \alpha_1, \alpha_2 \in \mathbb{R}\}.$
- 34. Show that \mathbb{R}^2 is a vector space.
- 35. Use backward substitution to solve the following linear system. Explain.

$$\begin{cases} x + y + z = 6, \\ 2y - 3z = -19, \\ 4z = 20. \end{cases}$$

- 36. Do the vectors [1,0], [0,1] span \mathbb{R}^2 ? Explain.
- 37. Do the vectors [-1,1], [1,-1] span \mathbb{R}^2 ? Explain.
- 38. Do the vectors [1,1], [1,-1], [0,1] span \mathbb{R}^2 ? Explain.
- 39. Write the vector [1,0] as a linear combination of [1,1], [1,-1], [0,1].