\mathbf{Last}	name	

First name _____

LARSON—MATH 310—CLASSROOM WORKSHEET 28 SVD & Rank-1 Matrices

Let $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

The SVD here is $A = U\Sigma V^T$:

$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$	0	0 1	0	3	0	0	0	0	0	0	1	
0 0 2 0	0	1 0	0	0	2	0	0	0	0	1	0	
0 0 0 3	= 1	0 0	0	0	0	1	0	0	1	0	0	•
0 0 0 0	0	0 0	1	0	0	0	0	1	0	0	0	

1. What is m, n and the rank r of the given matrix A?

- 2. Do the sizes of U, Σ and V make sense?
- 3. How many positive singular values must there be?
- 4. Call the positive singular values $\sigma_1, \ldots, \sigma_r$. What are the positive singular values $\sigma_1 \ge \ldots \ge \sigma_r$? Find Σ .
- 5. What are the $\vec{v_i}$'s?
- 6. Find V
- 7. Check that V is orthogonal.

- 8. What are the $\vec{u_i}$'s?
- 9. Check that U is orthogonal.
- 10. Check that $A\vec{v_i} = \sigma_i \vec{u_i}$ for i = 1, ..., r. Check that $A\vec{v_i} = 0$ for i > r.

11. Find the matrices $\sigma_1 \vec{u_1} \vec{v_1}^T, \ldots, \sigma_r \vec{u_r} \vec{v_r}^T$.

- 12. Check that the rank of each of $\sigma_1 \vec{u_1} \vec{v_1}^T, \ldots, \sigma_r \vec{u_r} \vec{v_r}^T$ is 1.
- 13. Check that $A = \sigma_1 \vec{u_1} \vec{v_1}^T + \ldots + \sigma_r \vec{u_r} \vec{v_r}^T$ (that is, that A is a sum of r rank-1 matrices).