Last name	

First name _____

LARSON—MATH 310—CLASSROOM WORKSHEET 25 Eigenvalues and Eigenvectors for Symmetric Matrices.

Review

- If there is a non-zero vector \vec{x} and scalar λ with $A\vec{x} = \lambda \vec{x}$ then λ is an **eigenvalue** of A and \vec{x} is a corresponding **eigenvector**.
- If $A\vec{x} = \lambda \vec{x}$, then $A\vec{x} \lambda \vec{x} = 0$, and $(A \lambda I)\vec{x} = 0$. Since \vec{x} is non-zero that means that $(A \lambda I)$ is not invertible, that the RREF has a 0-row, and that $\det(A) = 0$.
- (Claim:) The eigenvalues of any symmetric matrix are real.
- (Claim:) Any symmetric matrix A can be written as $A = Q\Lambda Q^T$, where Λ is diagonal and Q is orthogonal. (This is the **Real Spectral Theorem**).
- 1. (Claim:) If A is a symmetric matrix then eigenvectors corresponding to different eigenvalues are orthogonal.

2. (Claim:) For any matrix A, the eigenvalues of $A^T A$ and $A A^T$ are non-negative.

Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

 $A^{T}A$ will be significant when we investigate the singular value decomposition (SVD). We proved that $A^{T}A$ is symmetric and has real, non-negative, eigenvalues.

3. Find $A^T A$.

- 4. Find $(A^T A \lambda I)$.
- 5. Find det $(A^T A \lambda I)$. (λ is a variable—so your answer will have λ s in it).
- 6. Solve $det(A^T A \lambda I) = 0$.

7. For each solution λ , write the equation $(A^T A - \lambda I)\vec{x} = 0$, and solve for \vec{x} .

8. Check that your eigenvalue-eigenvector pairs work!