Last name _____

First name _____

LARSON—MATH 310—CLASSROOM WORKSHEET 23 Eigenvalues and Eigenvectors.

Review

• If there is a non-zero vector \vec{x} and scalar λ with $A\vec{x} = \lambda \vec{x}$ then λ is an **eigenvalue** of A and \vec{x} is a corresponding **eigenvector**.

Let $A = \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$. If $A\vec{x} = \lambda \vec{x}$, then $A\vec{x} - \lambda \vec{x} = 0$, and $(A - \lambda I)\vec{x} = 0$.

Since \vec{x} is non-zero that means that $(A - \lambda I)$ is not invertible, that the RREF has a 0-row, and that $\det(A) = 0$.

1. Find
$$(A - \lambda I)$$
.

- 2. Use the 2 × 2 determinant formula to find det $(A \lambda I)$. (λ is a variable—so your answer will have λ s in it).
- 3. Solve $det(A \lambda I) = 0$.

4. For each solution λ , write the equation $(A - \lambda I)\vec{x} = 0$, and solve for \vec{x} .

Let
$$A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$$
.

 $A^{T}A$ will be significant when we investigate the singular value decomposition (SVD). We proved that $A^{T}A$ is symmetric. We will prove that symmetric matrices have real eigenvalues.

6. Find $A^T A$.

If $A^T A \vec{x} = \lambda \vec{x}$, then $A^T A \vec{x} - \lambda \vec{x} = 0$, and $(A^T A - \lambda I) \vec{x} = 0$. Since \vec{x} is non-zero that means that $(A^T A - \lambda I)$ is not invertible, that the RREF has a 0-row, and that $\det(A^T A) = 0$.

- 7. Find $(A^T A \lambda I)$.
- 8. Use the 2 × 2 determinant formula to find det $(A^T A \lambda I)$. (λ is a variable—so your answer will have λ s in it).
- 9. Solve $\det(A^T A \lambda I) = 0$.

10. For each solution λ , write the equation $(A^T A - \lambda I)\vec{x} = 0$, and solve for \vec{x} .

11. Check that your eigenvalue-eigenvector pairs work!