Last name _____

First name

LARSON—MATH 310—CLASSROOM WORKSHEET 20 Orthogonal Bases & Gram-Schmidt.

Review

We found that, for any matrix A (with linearly independent columns), that the projection \vec{p} of a vector \vec{b} onto the column space of A is:

$$\vec{p} = A\vec{x}$$
 where $\vec{x} = (A^T A)^{-1} A^T \vec{b}$
so $\vec{p} = A(A^T A)^{-1} A^T \vec{b}$.

We can use this idea repeatedly to convert and collection of linearly independent vectors $\vec{a_1}, \vec{a_2}, \ldots, \vec{a_k}$ (which are a basis for the space those vectors span to a *nice* basis for the same space: orthonormal vectors $\vec{a_1}, \vec{a_2}, \ldots, \vec{a_k}$).

Here's the idea informally:

- 1. Unit-ize $\vec{a_1}$ to get $\vec{a_1'}$.
- 2. Project vector $\vec{a_2}$ onto the matrix A with $\vec{a_1}'$ as its only column.
- 3. Let $\vec{a_2}'$ be the error vector $\vec{e} = \vec{a_2}$ projection on A of $\vec{a_2}$, and unit-ize.
- 4. Repeat as necessary. Project vector $\vec{a_j}$ onto the matrix A with $\vec{a_1}', \vec{a_2}', \ldots, \vec{a_{j-1}}'$ as its columns.
- 5. Let $\vec{a_j}$ be the error vector $\vec{e} = \vec{a_j}$ projection on A of $\vec{a_j}$, and unit-ize.

Here's a formal algorithm:

- 1. Let $\vec{a_1}' = \frac{\vec{a_1}}{\|\vec{a_1}\|}$. Let A have $\vec{a_1}'$ as its only column.
- 2. Let $\vec{p} = A(A^T A)^{-1} A^T \vec{a_2}$. Let $\vec{e} = \vec{a_2} \vec{p}$. Let $\vec{a_2}' = \frac{\vec{e}}{\|\vec{e}\|}$.
- 3. Repeat as necessary. Let A be the matrix with columns $\vec{a_1}', \ldots, \vec{a_{j-1}}'$.
- 4. Let $\vec{p} = A(A^T A)^{-1} A^T \vec{a_j}$. Let $\vec{e} = \vec{a_j} \vec{p}$. Let $\vec{a_j}' = \frac{\vec{e}}{\|\vec{e}\|}$.

Now we'll find an orthogonal basis for the vector space spanned by vectors $\vec{a_1} = (1, 0, 0)$ and $\vec{a_2} = (1, 0, 1)$ and $\vec{a_3} = (0, 1, 1)$. We will find an orthogonal basis for the vector space spanned by vectors $\vec{a_1} = (1, 0, 0)$ and $\vec{a_2} = (1, 0, 1)$ and $\vec{a_3} = (0, 1, 1)$.

- 1. Find $\vec{a_1}'$ and find A.
- 2. Find the projection \vec{p} of $\vec{a_2}$ on the column space of A, then \vec{e} , then $\vec{a_2}'$.

- 3. Let A be the matrix with columns $\vec{a_1}', \vec{a_2}'$.
- 4. Find the projection \vec{p} of $\vec{a_3}$ on the column space of A, then \vec{e} , then $\vec{a_3}'$.

5. Let Q be the matrix whose columns are $\vec{a_1}', \vec{a_2}', \vec{a_3}'$. This is an orthogonal matrix. Check that $Q^T Q = I$.