Last name _____

First name _____

LARSON—MATH 310—CLASSROOM WORKSHEET 18 Projections.

Review

• What is the *dimension* of a vector space?

A is an $m \times n$ matrix (*m* rows, *n* columns), with rank *r*. The **Four Subspaces** are C(A), $C(A^T)$, N(A) and $N(A^T)$.

Fundamental Theorem of Linear Algebra, Part 1

- (Rank Theorem) The column space and row space both have dimension r.
- (Rank-Nullity Theorem) The nullspaces have dimension n-r and m-r.

Fundamental Theorem of Linear Algebra, Part 2

• The row space of A and the null space of A are orthogonal.

(So the row space of A^T and the null space of A^T are orthogonal. So...)

• The column space of A and the null space of A^T are orthogonal.

Let vector $\vec{b} = (3, 4, 4)$. We will *project* it onto the line through vector $\vec{a} = (2, 2, 1)$. We will find a vector \vec{p} with the following 2 properties:

- (1) $\vec{p} = x\vec{a}$ for some scalar x.
- (2) \vec{a} is orthogonal to $\vec{b} \vec{p}$.
- 1. Write property (2) as an equation.

2. Substitute (1) into your equation.

3. Simplify, and solve for x.

- 4. What is \vec{p} ?
- 5. Check that the vector \vec{p} you found satisfies property (2).

Now we will project $\vec{b} = (3, 4, 4)$ onto the subspace containing vectors $\vec{a_1} = (2, 2, 1)$ and $\vec{a_2} = (1, 0, 0)$.

We will find a vector \vec{p} with the following 2 properties:

- (1) $\vec{p} = x_1 \vec{a_1} + x_2 \vec{a_2}$ for some scalars x_1, x_2 .
- (2) Each vector $\vec{a_1}$ and $\vec{a_2}$ is orthogonal to $\vec{b} \vec{p}$.

6. Let A be the matrix with columns $\vec{a_1}$ and $\vec{a_2}$, let $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, and check that $\vec{p} = A\vec{x}$.

7. Find A^T and check that $A^T(\vec{b} - \vec{p}) = \vec{0}$, says the same thing as condition (2).

So, $A^T \vec{b} = A^T \vec{p} = A^T A \vec{x}$. 8. Find $A^T A$.

9. Now find $(A^T A)^{-1}$.