Last name	

First name _____

LARSON—MATH 310—CLASSROOM WORKSHEET 12 Column Space, Row Space, Null Space

Review

- The transpose of an $m \times n$ matrix $A = [a_{i,j}]$ is the $n \times m$ matrix $A^T = [a_{j,i}^t]$ where $a_{j,i}^t = a_{i,j}$.
- For any matrix A, $A^T A$ and $A A^T$ are square matrices.
- 1. What is a *symmetric* matrix?
- 2. Let A be any matrix. Why is $A^T A$ a symmetric matrix?
- 3. Let A be any matrix. Why is AA^T a symmetric matrix?
- 4. What is the *column space* C(A) of a matrix A?

5. Describe the column space C(I) of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

6. Describe the column space C(A) of $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Can you find a vector that is not in the column space?

- 7. Describe the column space C(A) of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$.
- 8. Can you find a "nice" description of C(A)?

The row space $C(A^T)$ of a matrix A is the set of all linear combinations of its rows. 9. Describe the row space $C(A^T)$ of matrix A.

- 10. Can you find a vector that is not in the row space of A?
- 11. Can you find a "nice" description of $C(A^T)$?
- 12. Find a specific (non-trivial) vector \vec{v} in the row space of A.

The null space N(A) of a matrix A is the set of all vectors \vec{x} where $A\vec{x} = \vec{0}$. 13. Find N(A) by solving $A\vec{x} = \vec{0}$.

14. Can you find a "nice" description of N(A)?