Last name _____

First name _____

LARSON—MATH 310—CLASSROOM WORKSHEET 11 Transposes

Review

- How can you find the inverse of an invertible matrix?
- How can you check if a matrix is not invertible?
- What is a *lower triangular* matrix L?
- How can we find an LU factorization of a square matrix A?
- Fact: The product of lower-triangular matrices is lower-triangular.

The transpose of an $m \times n$ matrix $A = [a_{i,j}]$ is the $n \times m$ matrix $A^T = [a_{j,i}^t]$ where $a_{j,i}^t = a_{i,j}$.

1. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
. Find A^T .

2. Let
$$\vec{v} = \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}$$
. Find \vec{v}^T .

3. Find $\vec{v}^T A^T$.

4. Find $A\vec{v}$.

- 5. Find $(A\vec{v})^T$.
- 6. Check that $\vec{v}^T A^T = (A\vec{v})^T$

- 7. Check that $\vec{v}^T A^T = (A\vec{v})^T$
- 8. Find $(A^T)^{-1}$.

9. Find A^{-1} .

- 10. Find $(A^{-1})^T$.
- 11. Check that $(A^T)^{-1} = (A^{-1})^T$.

12. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
. Find A^T .

- 13. Find $A^T A$.
- 14. Find AA^T .
- 15. What do you notice about both $A^T A$ and $A A^T$? Can you explain it?