Last name _____

First name _____

LARSON—MATH 310—CLASSROOM WORKSHEET 09 Matrix Multiplication

Review

- What is the dot product definition of matrix multiplication?
- Matrix multiplication is not commutative.
- What is the *identity matrix*?
- What is the *inverse* of a (square) matrix?
- 1. Find:

2	0	0	1	2	3
0	3	0	4	5	6
0	0	4	7	8	9
L			L		

2. Find a matrix D' that "reverses" what multiplication by D does. Check that D and D' are inverses.

3. Let
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix}$$
. Find A^{-1} if it exists. Check.

4. Let
$$B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
. Find B^{-1} if it exists. Check.

Let
$$C = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
. Find C^{-1} if it exists. Check.

5. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 5 & 6 \end{bmatrix}$$
. Find A^{-1} .

6. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 2 & 12 \end{bmatrix}$$
. Show that A is not invertible.

7. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 5 & 6 \end{bmatrix}$$
. Find A^{-1} .

8. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 2 & 12 \end{bmatrix}$$
. Show that A is not invertible

Fact: The product of lower-triangular matrices is lower-triangular.

9. Let $L_1 = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$ and $L_2 = \begin{bmatrix} 4 & 0 \\ 5 & 6 \end{bmatrix}$. Find L_1L_2 and check that it is lower-triangular.