Last name _____

First name _____

LARSON—MATH 310—CLASSROOM WORKSHEET 04 Matrix times a Vector

Review

- Check that if the angle between \vec{v} and \vec{w} is θ then $\cos \theta = \frac{\vec{v}}{\|\vec{v}\|} \cdot \frac{\vec{w}}{\|\vec{w}\|}$.
- Check that if \vec{v} and \vec{w} are perpendicular then $\vec{v} \cdot \vec{w} = 0$.
- Find a (non-trivial) vector \vec{u} which is perpendicular to \vec{v} .
- Cauchy's Inequality. For any vectors $\vec{v}, \vec{w}, |\vec{v} \cdot \vec{w}| \leq ||\vec{v}|| ||\vec{w}||$.
- Triangle Inequality : $\|\vec{v} + \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$.
- 1. What is the "linear combination of columns" definition of a $m \times n$ matrix A times a vector x in \mathbb{R}^n ?

2. Find $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, using the "linear combination of columns" definition.

3. What is the "dot product with rows" definition of a $m \times n$ matrix A times a vector x in \mathbb{R}^n ?

4. Find
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, using the "dot product with rows" definition.

5. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
, $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Solve $A\vec{x} = \vec{b}$.

6. How can we check if 3 vectors in \mathbb{R}^3 are co-planar?

Let
$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$.

7. Are \vec{u} , \vec{v} , and \vec{w} co-planar? Prove it by using our test.

8. What does it mean for vectors to be *linearly independent*?

9. Are \vec{u} , \vec{v} , and \vec{w} linearly independent or linearly dependent?