Last name _____

First name _____

LARSON—MATH 255–CLASSROOM WORKSHEET 02 Getting Started.

- 1. Create a Cocalc/Sage Cloud account.
 - (a) Start the Chrome browser.
 - (b) Go to http://cocalc.com
 - (c) "Create new account" using your VCU email address .
 - (d) You should see an existing Project for our class. Click on that.
 - (e) Click "New", then "Sage Worksheet", then call it **c02**.
 - (f) For each problem number, label it in the Sage cell where the work is. So for Problem 1, the first line of the cell should be **#Problem 1**.

The multiplication operator in Sage is "*". The most common error in Sage is forgetting to put in a "*" when multiplying.

- 2. Find 900(1 + .06(90/365)).
- 3. Find 25^2 by evaluating 25 * * 2. Find 25^{10} .

Sage uses only curved parentheses for grouping. The common square parentheses are reserved in Sage for $\mathit{lists}.$

4. Find $550 \frac{[1 + (1.05)^{-30}]}{0.05}$. What happened? How can you fix it?

Sage returns *exact expressions* (no rounding error) when possible.

5. Find an exact expression for $\sqrt{8}$ by evaluating sqrt(8).

You often have to *force* Sage to give you a decimal approximation of what you've calculated.

- 6. Use $n(_-)$ to find a decimal approximation for $\sqrt{8}$. (The underscore refers to the last computation).
- 7. What can you do for other roots besides sqrt? Find $\sqrt[6]{50}$.
- 8. Find $\sqrt{-4}$.
- 9. Find both square roots of -10.
- 10. Find i^2 .
- 11. Evaluate "pi". Then use n() to find a decimal approximation for π .

- 12. Find a decimal approximation for $\sqrt{2}$.
- 13. Evaluate "e". Find a 6-digit approximation for e
- 14. Find a 6-digit approximation for e^3
- 15. Find $\log 10$
- 16. Find $\log_{10} 10$.
- 17. Find $\sin \frac{\pi}{3}$
- 18. Find $\tan \frac{\pi}{2}$.
- 19. Find $\arcsin \frac{1}{2}$

Sage doesn't understand degrees-only radians. What can you do here?

- 20. Find $\sin 47^{\circ}$, and a decimal approximation.
- 21. Type in "i" and evaluate.
- 22. Find i^3 by hand, then check it with Sage.

plot is Sage's powerful and flexible command for plotting functions of a single variable.

- 23. Sketch the graph of x^3 on the interval (-2, 2).
- 24. Sketch the graph of |x 1| on a "nice" interval.
- 25. Sketch $\cos x$.
- 26. Sketch $\cos t$. What happens? What do you think the difference is?
- 27. Sketch $\cos x$ on the interval $(-2\pi, 2\pi)$.
- 28. Sketch $x^3 x$ with y-range between y = -6 and y = 6.

Getting your classwork recorded

When you are done, before you leave class...

- (a) Click the "Make pdf" (Adobe symbol) icon and make a pdf of this worksheet. (If Cocalc hangs, click the printer icon, then "Open", then print or make a pdf using your browser).
- (b) Send me an email with an informative header like "Math 255 c02 worksheet attached" (so that it will be properly recorded).
- (c) Remember to attach today's classroom worksheet!