
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 23 (2023) #P3.06
https://doi.org/10.26493/1855-3974.2340.a61

(Also available at http://amc-journal.eu)

Bootstrap percolation via automated
conjecturing*

Neal Bushaw †, Blake Conka, Vinay Gupta, Aidan Kierans, Hudson
Lafayette, Craig Larson, Kevin McCall, Andriy Mulyar, Christine
Sullivan, Scott Taylor, Evan Wainright, Evan Wilson, Guanyu Wu

Department of Mathematics and Applied Mathematics,
Virginia Commonwealth University, Richmond VA, USA

Sarah Loeb
Department of Mathematics and Computer Science, Hampden-Sydney College,

Hampden-Sydney VA, USA

Received 6 June 2020, accepted 28 February 2022, published online 24 January 2023

Abstract

Bootstrap percolation is a simple monotone cellular automaton with a long history in
physics, computer science, and discrete mathematics. In k-neighbor bootstrap percolation,
a collection of vertices are initially infected. Vertices with at least k infected neighbors sub-
sequently become infected; the process continues until no new vertices become infected. In
this paper, we hunt for graphs which can become entirely infected from initial sets which
are as small as possible. We use automated conjecture-generating software and a large
group lab-based model as a fundamental part of our exploration.

Keywords: Bootstrap percolation, automated conjecturing, graph theory, percolation, cellular au-
tomata.

Math. Subj. Class. (2020): 05C35,68R05

*We thank the anonymous referees for their detailed and useful comments, suggestions, and references.
†Corresponding author.
E-mail addresses: nobushaw@vcu.edu (Neal Bushaw), conkaba@vcu.edu (Blake Conka),

guptavp@vcu.edu (Vinay Gupta), kieransaf@vcu.edu (Aidan Kierans), lafayettehl@vcu.edu (Hudson
Lafayette), clarson@vcu.edu (Craig Larson), mccallkj@vcu.edu (Kevin McCall), andriy.mulyar@gmail.com
(Andriy Mulyar), sullivanca2@vcu.edu (Christine Sullivan), taylorsm9@vcu.edu (Scott Taylor),
wainrightep@vcu.edu (Evan Wainright), wilsonea@vcu.edu (Evan Wilson), wug2@vcu.edu (Guanyu Wu),
sloeb@hsc.edu (Sarah Loeb)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/

2 Ars Math. Contemp. 23 (2023) #P3.06

1 Introduction
1.1 History

Bootstrap percolation can be thought of as a graph process in which an arbitrary initial
configuration of infected vertices is selected from a graph; remaining uninfected vertices
with many infected neighbors are successively added to the infected set until the system
stabilizes. Bootstrap percolation serves as a model of nucleation and growth [12] and has
been applied in the study of crack formation [1], magnetic alloys [13], hydrogen mixtures
[2], and computer storage arrays [20]. More generally, it provides an important stepping
stone towards understanding other cellular automaton models with applications in physics,
biology, information technology, epidemiology, and more.

The k-bootstrap model has a long and interesting history. First introduced by Chalupa,
Leath, and Reich [13] in 1979 as a way to model magnetic materials, it is perhaps the
simplest example of a monotone cellular automata (which were introduced by von Neu-
mann [26], based on a suggestion of Ulam [25]). Most of the work related to bootstrap
percolation has focused on finding thresholds for growing families of graphs, in which the
initially infected sets are chosen at random. For the interested reader, this fascinating direc-
tion can be explored through, e.g., [3, 4, 5, 10, 11, 19]). These bootstrap models have been
generalized significantly in recent years, with the advent of graph bootstrap percolation [8].

Here, however, we go in a somewhat different direction. Rather than selecting the
initially infected vertices at random, we allow them to be chosen very carefully. How small
could such an initial set be, given that it eventually infects the entire graph?

It is clear that if the infection can only spread to vertices with at least k infected neigh-
bors, then such an initial infected set can contain no fewer than k vertices (otherwise, not
even a single uninfected vertex can become infected). In this note, we search for those
graphs which can be infected from a set exactly k vertices – that is, those graphs which can
be infected as easily as possible.

This work is inspired by earlier results of Dairyko, Ferrara, Lidický, Martin, Pfender
and Uzzell [15], and Freund, Poloczek, and Reichman [17]. These groups gave degree
conditions for graphs to be infectable from a small set, in the case that k = 2. Similar
results were later proven by Gunderson [18] and Wesolek [27] for the k ≥ 3 cases. We stay
with the k = 2 case, but provide non-degree based conditions for percolation from small
sets.

1.2 Conjecturing

The conjectures reported below are the product of the property-relations version of the
CONJECTURING program of Larson and Van Cleemput [21, 22]. While the program is
described in these papers it is worth mentioning that produced conjectures are produced if
they are both true for all input (graph) examples and significant—here this means that the
produced conjecture was an improvement of either temporarily stored potential conjectures
or user-supplied theoretical knowledge (theorems). The CONJECTURING program is open-
source, and written to work with Sage; the code, examples, and set-up instructions are
available at: nvcleemp.github.io/conjecturing/. A substantial effort has also
been made to code graph-theoretic knowledge; this is available at: math1um.github.
io/objects-invariants-properties/.

CONJECTURING is used a tool in this research; while we don’t mean to add anything
to the papers that describe how the program works, we will add some context for inter-

nvcleemp.github.io/conjecturing/
math1um.github.io/objects-invariants-properties/
math1um.github.io/objects-invariants-properties/

N. Bushaw et al.: Bootstrap percolation via automated conjecturing 3

ested readers. In this paper we investigate both sufficient and necessary conditions for a
graph to be 2-bootstrap-good. Sufficient conditions are themselves properties, often them-
selves boolean functions of more basic properties. The CONJECTURING program allows
the user to input any list of pre-coded properties to use as “ingredients” for these sufficient
conditions. These input (or basic, or pre-coded) properties have minimum complexity—or
“complexity-1”. A unary boolean operator, such as negation, applied to a complexity-1
property yields a complexity-2 property. The CONJECTURING will systematically build
every possible property-expression from these input properties and (built-in) boolean op-
erators. The CONJECTURING program also allows the user to input a list of graphs. A
property P will be considered to be a possible sufficient condition for a graph to be 2-
bootstrap-good if every input graph G that has property P is also 2-bootstrap-good. A
possible sufficient condition P will only be added as a (potential) conjecture if it is true
for some input graph G which is false for every other currently stored sufficient condition
conjecture.

The user of the CONJECTURING can improve the quality of the produced conjectures
by adding more pre-coded properties, and by adding as input graphs any graphs that have
been found to be counterexamples to previous conjectures. The CONJECTURING program
simply systematizes and automates what a human mathematician already does: a human
mathematician’s sufficient condition condition conjectures for a graph to be 2-bootstrap-
good are necessarily properties “built” from graph properties she already knows and should
be true at least for the specific graphs she has tested them on. In a precise sense, a human
cannot make a “better” conjecture for a graph to be 2-bootstrap-good than the conjectures
the CONJECTURING program makes (from the same inputs). Maybe the most important
feature of the program is its ability to systematically consider every property up to some
complexity—no human can do this.

A last feature we will mention of the CONJECTURING program is its ability to use
theorems or theoretical knowledge. Suppose it is known that property P is a sufficient
condition for a graph to be 2-bootstrap-good. This can be added as an input to the program:
any conjectured sufficient condition property Q must be true for some input graph G which
does not have property P . This feature of the program can be useful to “grow” a theory.
In fact, some simple theorems may later be superseded. There is utility still in simple
theorems: Dirac’s Theorem, for instance, is still of interest—even though it is now implied
by less-simple, more comprehensive, theorems.

1.3 Definitions

Here, we define precisely the k-bootstrap percolation model. Wherever possible, we use
standard graph theoretic notation (see, e.g., [7]).

Let k be a natural number, G a graph, and let I ⊆ V (G) be a set of vertices which
we think of as being initially infected. We then grow the infected set as follows: if an
uninfected vertex v has at least k neighbors which are infected, then we add it to I. That
is, whenever we have a vertex v ∈ V (G) \ I with |N(v) ∩ I| ≥ k, then we move v to
I.1 Eventually, this process stabilizes – either every remaining uninfected vertex has fewer

1There is some abiguity here – we have described this process as happening a single vertex at a time. That
is, each vertex of the graph in sequence checks its number of infected neighbors, and becomes infected if this is
large. It is more standard to think of this infection as occurring in ‘rounds’, where every vertex with lots of infected
neighbors is infected simultaneously. Because the process is monotone (infected vertices never uninfect), both
versions reach the same final percolating set. We won’t be concerned with things like the time to percolate, which

4 Ars Math. Contemp. 23 (2023) #P3.06

than k neighbors in I, or every vertex has joined I. We denote this final infected set by ⟨I⟩.
When ⟨I⟩ = V (G), we say that G k-percolates from I. When G is clear from context,
we will say that I k-percolates; when k is also clear from context, we simply say that I
percolates.

For a graph with more than k vertices, any set I which k-percolates must have |I| ≥ k;
otherwise, there are not enough vertices in total for any uninfected vertex to join I. With
this minimum size in mind, we call a graph k-bootstrap-good if there is a set of size exactly
k which k-percolates2. A graph which is not k-bootstrap-good is k-bootstrap-bad.

We define m(G, k) to be the minimum size of a set I such that G k-percolates from I.
As such, our k-bootstrap-good graphs are those which have m(G, k) = k. In the rest of
this paper, we focus on finding conditions related to 2-bootstrap-good graphs3.

2 Lemmata (useful lemmas)
In this section, we note a few very simple results which we shall use frequently in the
remainder of the paper. To be explicit, since we’re only interested in graphs which might
be 2-bootstrap-good, all theorems and conjectures following should be assumed to have the
following extra conditions:

1. We focus exclusively on graphs with at least 3 vertices, since it requires two neigh-
bors to become infected.

2. All graphs are connected. (The only disconnected graph which is 2-bootstrap-good
is the graph with two isolated vertices)

3. All graphs have at most two blocks (as discussed in the following paragraph.).

Recall that a block in a graph G is a maximal connected subgraph with no cut vertex.
We enforce the third condition above due to the following lemma.

Lemma 2.1. If a graph is 2-bootstrap-good, then it has at most two blocks.

Proof. Assume G is a connected graph with three blocks B1, B2, B3. Since G is con-
nected, the blocks are nontrivial (that is, the blocks are either K2 or 2-connected graph). If
both infected vertices are in a single block (say B1), then at most one vertex vertex of B2

will be infected – the cut vertex separating B1 and B2, if such a vertex exists. Thus B2 will
not be infected, and so the set cannot percolate.

If, instead, the infected vertices are in different blocks, then either no infection will
spread, or if the two vertices are adjacent to a common cut vertex, they will infect first only
that common cut vertex. This can then spread to the two blocks, but as before it will not
move to the remaining block (since it cannot spread beyond the cut vertex).

As a consequence of this, we note that in particular if G contains a cut edge between
two bad subgraphs, then G is itself 2-bootstrap-bad.

We shall frequently make use the following two lemmas, which help us to decompose
graphs which are k-bootstrap-good.

is itself a fascinating area of research, and so we shall use either the ‘vertex-by-vertex’ or ‘rounds’ perspective as
we see fit.

2It is worth noting here that we only require the existence of a single small percolating set – not that every set
of k vertices percolates.

3Thus wherever it is not stated, the reader should assume that we are discussing 2-bootstrap percolation and
that a graph declared ‘good’ is in fact ‘2-bootstrap-good’.

N. Bushaw et al.: Bootstrap percolation via automated conjecturing 5

Lemma 2.2. If G is k-bootstrap-good and H is formed by adding a vertex v with at least
k neighbors inside G, then H is also good.

By infecting the initial percolating set I of size k in G, all of G will become infected,
including (at least) k neighbors of v, and so v will also become infected. And so, our initial
set I inside G actually percolates to all of H .

Lemma 2.3. If G is an n vertex graph which is k-bootstrap-good, then it can be con-
structed from an n−1 vertex k-bootstrap-good graph G′ and adding a new vertex adjacent
to at least k vertices of G′.

This is immediate – consider a minimum size infecting set, and let v be the very last
vertex which becomes infected.

To be explicit, as we are only interested in graphs which might be 2-bootstrap-good, in
order to avoid very long theorem statements, we really wish all of our theorems to have the
following additional conditions:

1. As we stated in the introduction, we focus exclusively on graphs with at least 3
vertices.

2. All graphs are connected. (The only disconnected graph which is 2-bootstrap-good
is the graph with two isolated vertices)

3. All graphs have at most two blocks (as discussed in the Lemmata).

We collect together this set of ‘potentially bootstrap good’ graphs in the definition be-
low. This will allow us to simplify our theorems tremendously; rather than, e.g., “every
connected chordal graph with at least three vertices and at most two blocks is 2-bootstrap-
good”, we can simply say “A graph in G which is chordal is 2-bootstrap-good”.

Definition 2.4. We let G denote the set of all connected graphs of order at least three which
have at most two blocks. We emphasize that the all large graphs which are 2-bootstrap-good
are in G.

2.1 Which graphs are bad?

In this section, we collect some easy properties of 2-bootstrap-bad graphs. While none of
these results are new (and several seem to be folklore), we give their very short proofs here
for completeness. The first two of these rely on the simple observation that pendant vertices
must be initially infected in any percolating set.

Proposition 2.5. A graph with at least two leaves with distinct parents is 2-bootstrap-bad.

Again, this is straightforward – leaves can never become infected if they are not ini-
tially infected; thus any leaves must be initially infected. So, both leaves must be initially
infected, and since these have distinct parents the infection does not spread.

Proposition 2.6. Any graph with at least three leaves is 2-bootstrap-bad.

As above, leaves must be initially infected, and there are simply too many to infect.

Proposition 2.7. The path graph Pk of order k ≥ 4 is 2-bootstrap-bad.

6 Ars Math. Contemp. 23 (2023) #P3.06

Initially infected vertices x and y are either adjacent (and no spread happens), or not
(in which case they infect exactly the vertex in between them if d(x, y) = 2 and no vertices
otherwise).

Proposition 2.8. The cycle Ck of order k ≥ 4 is 2-bootstrap-bad.

Consider a cycle x1x2 . . . xk, with initially infected vertices xi, xj with i < j. If
j − i ∈ 1, 3, 4, . . . , k − 1, then no new vertices are infected; otherwise, xi+1 is infected
and the spread stops.

For the next results, we denote by d(G) the average degree of G, we denote the maxi-
mum average degree by mad(G) := maxG′⊆G d(G′); this is a well known graph parameter
arising in chromatic theory. We will prove the following using a simple counting technique
due to Riedl (who also uses wasted and used edges similar to our usable edges above) [23].

Theorem 2.9. Let ε > 0. Then there is some N = N(ε) such that every graph with
mad(G) < 4− ε and |G| > N is 2-bootstrap-bad.

It is worth noting that this theorem is sharp, as is seen by the square of the cycle C2
n for

each n; such graphs have mad(G) = 4 and are 2-bootstrap-good for each n. In fact, we
will prove the corresponding result for the more general k-bootstrap model; this is again
shown to be sharp by the kth power of the cycle.

Theorem 2.10. Let ε > 0. Then there is some N = N(ε) such that every graph with
mad(G) < 2k − ε and |G| > N is k-bootstrap-bad.

Proof. Assume G is k-bootstrap-good, with vertices infected one at a time; let Ht be the
graph induced by those vertices which are infected within the first t steps. Then since we
initially infected k vertices, followed by one vertex at each time step, we have |Ht| = t+k.
Further, each vertex was infected because it had at least k edges to the preceding infected
vertices and so ∥Ht∥ ≥ kt. Thus d(G) ≥ kt

t+k , and for t sufficiently large this is larger than
2k − ε; this contradicts the maximum average degree condition.

2.2 What is required to be good?

As is common in such problems, we provide only a few necessary conditions for a graph
to be 2-bootstrap-good. The first of these is immediate from Lemma 2.3.

Proposition 2.11. If G is good, then ∥G∥ ≥ 2(|G| − 2).

The next result will be of considerable use to us later. Recall that the girth of a graph is
the minimum of the cycle lengths present.

Proposition 2.12. If G is 2-bootstrap-good and not P3, then it has girth less than five.

Proof. Consider two initially infected vertices u and v which percolate. Since we’re assum-
ing our graphs have at least 3 vertices, there is some vertex w which is becomes infected
next – it is adjacent to both u and v. If uv ∈ E(G), then we already have a triangle. Oth-
erwise, if G is not K1,2, then there is a fourth vertex which becomes infected; say x. Then
x must be adjacent to two of {u, v, w} – if it is adjacent to both v, w, we form a triangle; if
it is adjacent to u,w or u, v we form a C4.

Note that this result shows that the Petersen graph is not 2-bootstrap-good.

N. Bushaw et al.: Bootstrap percolation via automated conjecturing 7

2.3 What will guarantee goodness?

In this section, we provide a number of theorems giving sufficient conditions for a graph
to be 2-bootstrap-good. The first of these require little to prove; however, they were the
first conjectures provided by the CONJECTURING program, so we record them here for
completeness.

Proposition 2.13. Complete graphs are 2-bootstrap-good.

Proposition 2.14. Complete bipartite graphs are 2-bootstrap-good.

Proof. Since |G| > 2, one of the bipartition classes class has at least two vertices; assume
that G has bipartition (X,Y) with |X| > 1. Initially infect two vertices of X . Since the
graph is complete bipartite, every vertex of Y is infected immediately. Then, the remaining
vertices of X become infected in the next step.

Indeed, this remains true for the similar class of split graphs – those graphs whose
vertex set can be partitioned into a clique and an independent set.

Theorem 2.15. If G is a split graph with at most two blocks, then G is 2-bootstrap-good.

Proof. First, notice that if the complete side has only one vertex, then the graph is a star
(and thus either K2 or K1,2, since it has at most two blocks, and thus good.) The graph
can have at most one pendant, v, which must lie in the independent set. Choosing v and
any vertex of the complete graph which is not the parent of v will infect the entire graph,
since the complete graph will become immediately infected and each non-pendant in the
independent set must be adjacent to at least two vertices of the complete graph. If there is
no pendant, then infecting any two vertices of the complete graph will suffice.

The above classes of graphs percolate very quickly (in at most 3 steps). Next, we see a
class of graphs which percolates, but not necessarily in a fixed number of steps. Recall that
a graph is locally connected if the open neighborhood of every vertex is a connected graph.

Theorem 2.16. If a graph G ∈ G is locally connected, then it is 2-bootstrap-good.

Proof. First, note that a locally connected graph has no pendants – otherwise, the neighbor-
hood of the pendant vertex’s parent contains an isolated vertex. Hence let G be a locally-
connected graph, v be any vertex and w be any neighbor of v. We initially infect {v, w}.
Recall that ⟨{v, w}⟩ is then the set of vertices eventually infected from {v, w}.

As the (open) neighborhood N(v) is connected there is a path w = x1...xk = u from w
to any other vertex u in the graph H = G[N(v)] induced by N(v). Note that each vertex xi

in this path is necessarily a neighbor of v. Since v and w are infected and x2 is a neighbor
of both, x2 is also infected. Similarly x3, ..., xk = u must all be infected. So N(v) is a
subset of ⟨{v, w}⟩. By a symmetric argument N(w) is also a subset of ⟨{v, w}⟩.

Suppose ⟨{v, w}⟩ does not equal V . Let x be any vertex in V \⟨{v, w}⟩ that is adjacent
to some vertex y ∈ ⟨{v, w}⟩. Since y ∈ ⟨{v, w}⟩ and our graph is connected, there must
also be a neighbor z of y in ⟨{v, w}⟩. By the reasoning above it follows that N(y) must be
a subset of ⟨{v, w}⟩. But then x must be in ⟨{v, w}⟩.

It is worth noting that the above proof in fact shows that if G is locally connected and
pendant-free, then G 2-percolates from any set of two adjacent vertices.

8 Ars Math. Contemp. 23 (2023) #P3.06

The CONJECTURING program made several conjectures of the form that a known suffi-
cient condition for graph Hamiltonicity is a sufficient condition for 2-bootstrap-goodness.
It is a well-known result that Dirac graphs are Hamiltonian; indeed Freund, Poloczek, and
Reichmann [16] proved that they are also 2-bootstrap-good. As we will use similar tech-
niques later, we provide a short proof here.

Theorem 2.17. If a graph in G is Dirac then it is 2-bootstrap-good.

Proof. It is easy to check that graphs with order three with the Dirac property are 2-
bootstrap-good. Assume that Dirac graphs with fewer than n vertices are 2-bootstrap-good.
Let G be a Dirac graph with n vertices; so every vertex in G has degree at least n

2 .
Let H be a 2-bootstrap-good subgraph of H with a maximum number of vertices. Note

that no vertex in V \ H has more than one neighbor in H , otherwise H would not be a
maximum 2-bootstrap-good subgraph of G. So every vertex in V \ H has at least n

2 − 1
neighbors in V \H . So V \H induces a Dirac subgraph of G. By our inductive assumption
the graph G[V \H] is 2-bootstrap-good. Since every vertex in G[V \H] has degree at least
n
2 − 1 and the order of G[V \H] is no more than the order of h, it follows that both H and
V \H have order n

2 .
So G has the structure of two complete order n

2 complete sugraphs with a matching
from H to V \H . Let v be a vertex in H , v′ be the vertex it is matched to in V \H and
w be any other vertex in V \ H . It is easy to see that {v, w} percolates G and thus G is
2-bootstrap-good.

As a consequence, we obtain the following easy corollary.

Corollary 2.18. If a graph in G is 2-bootstrap-good then it is either not cubic or it is Dirac.

Proof. A graph which is both Dirac and cubic has order at most six (and no cubic graph has
order seven). Hence it suffices to prove that if G is cubic with at least eight vertices, then
it is not 2-bootstrap-good. We’ll call an edge ‘usable’ at any particular step in the infection
process if it has one infected endpoint and one uninfected endpoint. If an infected graph
has less than two usable edges, then the infection cannot spread any further. Consider an
initial set of two infected vertices in G. There are at most six usable edges leaving this set,
since G is cubic. Any new infected vertex will make two edges unusable, and add at most
one usable edges; thus the total number of usable edges drops by at least one with each
newly infected vertex. Hence, the final number of infected vertices can be at most five,
since at this point there will be at most one usable edge remaining.

A graph with order n is Ore if every pair of non-adjacent vertices have degree sum at
least n: being Ore is also a sufficient condition for being Hamiltonian. The CONJECTURING
program also conjectured that Ore graphs are 2-bootstrap-good – this is strictly weaker than
the result proven in [15], who prove that in fact degree sum at least n− 2 is enough.

Recall that a graph is chordal if it has no induced cycle of length longer than three.
In order to prove that all chordal graphs are 2-bootstrap-good, we will need the following
lemma.

Lemma 2.19. Let G ∈ G be a 2-connected chordal graph and S ⊊ V (G) such that |S| ≥ 2
and G[S] is connected. Then there is some x ∈ V (G) \S such that x is adjacent to at least
two vertices v, w ∈ S.

N. Bushaw et al.: Bootstrap percolation via automated conjecturing 9

Proof. Consider building an auxiliary graph G′ by adding a new vertex y adjacent to ev-
erything in S. By its construction, G′ is 2-connected. Pick x ∈ V \ S to minimize the
total length of two internally disjoint paths from x to p; call these paths P1 = xv1 . . . vny
and P2 = xw1 . . . wmy. By minimality, both vn and wm are both in S. Since G[S] is
connected, there is a path from vn to wm in S; let P = vnp1 . . . pkwm be a minimum
length such path. By taking the union of P1vn, P2vm and P , we find a cycle, which by
minimality must be induced. But since G is chordal, this means the cycle is a triangle, and
it means that x is the vertex we wanted.

From this lemma, we easily deduce that all chordal graphs are 2-bootstrap-good.

Theorem 2.20. If G ∈ G is chordal, then it is 2-bootstrap-good.

Proof. If G contains a single block, infect any two adjacent vertices. Otherwise, infect one
vertex of each block (both of which are adjacent to the cut vertex). Thus in each block we
have two infected adjacent vertices, and so by repeatedly applying Lemma 2.19 we infect
a new vertex as long as there is some uninfected vertex.

In fact, something somewhat stronger is true – every chordal graph is a strangulated
graph; this somewhat less common class of graphs consists of those graphs in which delet-
ing the edges of any induced cycle of length greater than three would disconnect the re-
maining graph.

Theorem 2.21. If G ∈ G is a strangulated graph, then it is 2-bootstrap-good.

Proof. A strangulated graph can be constructed from chordal graphs and maximal planar
graphs by gluing along cliques [24]. If such a graph is a block, then all the gluings occur
along cliques of size at least two. We argue that any two adjacent vertices will infect the
graph since both chordal graphs and maximal planar graphs can be infected from any initial
adjacent pair (this is argued above for chordal graphs).

Indeed, let H be a maximal 2-bootstrap-good subgraph of a maximal planar graph G
(such maximal planar graphs are well known to be triangulations). If H ̸= G, then there
must be some vertex v ∈ G −H with a neighbor w ∈ H ∩ N(v). We orient the vertices
around w clockwise as x1, x2, . . . , xk. Note that v = xi for some i ∈ [k], and there is
at least one xj from H (possibly with i = j). Hence at some point there must be a pair
xℓ, xℓ+1 (we think cyclically, allowing xk, x1) with exactly of the pair in H and the other
in G − H . But then {w, xℓ, xℓ+1} lie on a common face, which must be a triangle. As
such, any infection which percolates on H also spreads to all of w, xℓ, xℓ+1 contradicting
maximality. Thus it must be that H = G, and so each triangulation can be percolated from
any adjacent pair. Note that if a strangulated graph has two blocks, then there it has only
one gluing that is along a single vertex; infecting a single neighbor from each adjacent
block will infect the entire graph via the infection processes described above inside each
block.

A different superclass of chordal graphs is that of dually chordal graphs (so named
because they are the clique graphs of chordal graphs, and thus dual in nature to chordal
graphs). An alternate characterization is that a graph is dually chordal if and only if the
hypergraph of its maximal cliques is the dual is a hypertree [9] (we give a more technical
version of this somewhat non-standard term inside the proof). These graphs, like chordal
graphs, are always 2-bootstrap-good.

10 Ars Math. Contemp. 23 (2023) #P3.06

Theorem 2.22. If G ∈ G is dually chordal, then it is 2-bootstrap-good.

Proof. We first make use of an alternate characterization. If a graph is dually chordal if the
auxiliary hypergraph formed with V (H) = V (G) and E(H) = {X : G[X] is a maximal
clique} is a hypertree (that is, it is connected and has no cycles). If G contains a single
block, then each pair of cliques intersects in at least two vertices; thus infecting any adjacent
vertices will infect the entire block (as it percolates through the cliques of the instersection
hypertree). For a graph with two blocks, we once again infect a single vertex of each block,
with both adjacent to the cut vertex.

Next, recall that a graph is called a cograph (short for complement reducible) when it
contains no induced copy of the path P4. The CONJECTURING program conjectured that
such graphs are 2-bootstrap-good.

Theorem 2.23. If G ∈ G is a cograph, then it is 2-bootstrap-good.

Proof. Cographs can be constructed by taking disjoint unions and joins of cographs, start-
ing from single vertices [14]. We proceed by strong induction on order of our cograph; the
base cases are trivial. Consider next a cograph which is a single block. Since G ∈ G, we
know that G is connected and thus it arises from taking the join of two cographs G1 and
G2. Consider infecting two vertices from G1; this will infect all of G2 in the next step, and
these will infect the remainder of G2 in the second step. Note that this shows something
slightly stronger – we can infect any two vertices in either part of their block. Therefore, if
G is constructed from two blocks G1 and G2 sharing a cut-vertex, and each Gi was con-
structed by taking the join of Hi,1 and Hi,2 with at least two vertices each, then we simply
select a vertex in H1,k and H2,j which are adjacent to the cut vertex; this will infect the cut
vertex, and then spread to the blocks by the preceding argument.

3 Which Kneser graphs are good?
Finally, we make a somewhat different attack; rather than proving a general condition is
sufficient, we explore a particular class of graphs and characterize those which are good. In
particular, recall that the Kneser graph KG

(t)
s is a graph whose vertices are the t element

subsets of [s], with two vertices adjacent when their corresponding subsets are disjoint.
Trivially, this graph is an independent set whenever s < 2t. But when is it 2-bootstrap-
good?

KG
(1)
1 and KG

(1)
2 are both trivially 2-bootstrap-good, and these are the only interesting

Kneser graphs with s ≤ 2. Further, we note that for k ≥ 2, the graph KG
(t)
2t is a collection

of disjoint edges; this is clearly not 2-bootstrap-good, so we may assume that s ≥ 2t + 1.
All remaining possibilities are covered by the following theorem.

Theorem 3.1. Assume s ≥ 3. A Kneser graph KG
(t)
s ∈ G is 2-bootstrap-good if and only

if s ≥ min{3t, 2t+ 3}.

Proof of Theorem 3.1. Necessity: Assume that s < 3t, that s ≤ 2t + 2, and let v, w be
vertices of KG

(t)
s (that is, v and w are size t subsets of [s]) with which our infection begins.

Note that since v and w are t element sets, we have |v∩w| ∈ [0, t−1]. Let A := v∪w ⊆ [s],
and let B := [s] \ A. Note that if a vertex x is adjacent to both v and w (that is, x can be
infected by {v, w}), then x must be disjoint from A – and thus x ⊆ B.

N. Bushaw et al.: Bootstrap percolation via automated conjecturing 11

Since s ≥ 3, we have at least three vertices in KG
(t)
s , and so if |B| < t, then there

are no vertices disjoint from |A| and so v and w cannot infect any vertices. So, if our
infection is to percolate we must choose v and w in order to guarantee |B| ≥ t, and so
|A| = s− |B| ≤ t+ 2. Now we need only consider two cases – either |A| = t+ 1 (and so
v and w share t − 1 common elements) or |A| = t + 2 (and so v, w share t − 2 common
elements). Most of our work will lie in proving the first case; the second will fall shortly
after.

Assume |A| = t + 1; then |B| = t or |B| = t + 1. If |B| = t, then there is only a
single vertex x, which will become infected by v and w. Since s < 3t, there are no vertices
adjacent to both x and v or to both x and w. Thus the infection stops at precisely three
vertices, and since

(
s
t

)
≥ 4 for all s, t satisfying our conditions, this is not the entire graph.

If |B| = t + 1, then similarly v and w can infect t + 1 new vertices. At the next
stage, any two of these vertices will infect all vertices disjoint from B – these are precisely
X = {y : |y| = t and y ⊆ A}. In these last two steps, we’ve built a complete bipartite
infected Kt+1,t+1. We will show that the infection can spread no further.

Let X be as above, and let Y be the corresponding vertices from B. Since s < 3t, there
is again no vertex adjacent to both a vertex from X and a vertex from Y . Further, any two
vertices a, b ∈ X (or both in Y) contain t − 1 common elements, so between them they
both contain all t + 1 elements of A (or of B). Then, the only vertices adjacent to both
a, b are those vertices in the other half of our bipartite graph – which are already infected.
Again, the infection process must stop. Since vertices with some elements from A and
some elements from B are not yet infected, the initial set has not percolated.

Finally, assume |A| = t + 2. Then, |B| = t and there is only one vertex infected by
v and w. As above, the infection cannot spread any further, and since there are more than
three vertices in KG

(t)
s we cannot infect the whole graph.

Sufficiency: Suppose we have s ≥ 3, along with s ≥ 3t or s ≥ 2t + 3. We note that
there are only two Kneser graphs for which s ≥ 3t but s < 2t + 3 – these are KG

(1)
3

and KG
(2)
6 . Since KG

(1)
3

∼= K3, this is trivially 2-bootstrap-good. Further, one can easily
check that {{1, 2}, {2, 3}} percolates in KG

(2)
6 (as does any other pair of vertices sharing

a common element). For all other values of our parameters, we may assume s ≥ 2t + 3
(since s ≥ 3t will guarantee this).

As in KG
(2)
6 we choose two vertices v and w with |v ∩ w| = t − 1. Then, letting

A := v ∪ w ⊆ [s] and B := [s] \ A as before, we have |A| = t + 1 and |B| ≥ t + 2.
Now, we partition the vertices x of KG

(t)
s according to the size of |A ∩ x|, noting that

|B ∩ x| = t− |A ∩ x|. We denote these sets A0, A1, . . . , At, where |Ai| = i.
Initially, we infect vertices v and w. In the second round, v and w infect all vertices

disjoint from A; that is, all those vertices in A0. These vertices in A0 then infect all those
vertices in At (which are disjoint from B). Since |B| ≥ t+ 2, we can choose two vertices
b1 and b2 in A0 which overlap which share t− 1 elements, so that |b1 ∪ b2| = t+ 1. Then,
there will be at least one element of y ∈ B \ (b1 ∪ b2), so b1 and b2 can infect the vertices
in At−1. Finally, we show that our infection percolates from this point.

Claim 3.2. If all vertices in At, At−1, and A0 are infected, the entire graph will become
infected.

Proof of Claim 3.2. For any choice of k ∈ [1, t] we can choose two vertices of Ak such
that we can from them infect a vertex in At−k and in At−k+1. Choose two vertices v and

12 Ars Math. Contemp. 23 (2023) #P3.06

w from Ak for which |v ∩A| = |w ∩A| and |(v ∩B)∩ (w ∩B)| = t− k− 1. Now, since
|A| = t + 1, we have t + 1 − k elements of A at our disposal, and since |B| ≥ t + 2 we
have at least t + 2 − (t − k + 1) = k + 1 elements available from B. Since a vertex of
At−k+1 requires t− k + 1 elements of A and t− (t− k + 1) = k − 1 elements of B, and
so such a vertex exists. Further, since we have every element of Ak already infected, we
can choose v ∩A and w ∩A such that any t+ 1− k elements are available, and since our
choice of v ∩ B and w ∩ B is independent of our choice these, we can choose v ∩ B and
w ∩ B so that any k + 1 entries are available from B; this allows us to infect our desired
vertex in At−k+1.

To infect a vertex in At−k, choose v and w such that |(v ∩A) ∩ (w ∩A)| = k − 1 and
such that v ∩B = w ∩B. Then we have again t+ 1− (k+ 1) = t− k elements available
from A, and at least t+ 2− (t− k) = k + 2 elements of B. Thus we can find a vertex in
At−k adjacent to both v and w, and which will thus become infected. As before, we can
infect any vertex of At−k this way.

End of Proof of Theorem 3.1.

4 Conclusion and further work
This is an introductory exploration to the area of very small percolating sets. Building on
the work of Dairkyo et al. [15], and others, we used the automated conjecturing frame-
work to begin a systematic search for classes of graphs which are 2-bootstrap-good (or
2-bootstrap-bad). From this starting point, we’ve given a number of not-so-hard-to-prove
but quite-hard-to-discover conditions (both necessary and sufficient) for a graph to be 2-
bootstrap-good. It remains an intriguing open question to find a full characterization of
such graphs (however, at this early stage we do not even have a conjecture of what such a
characterization might look like).

Further, there are many natural generalizations of these results to explore. In particular,
what properties will guarantee that a graph has a k-element percolating set in k-bootstrap
percolation? This paper explores the k = 2 case, but k = 3 and higher are as interesting. In
addition, bootstrap percolation is just one of many monotone cellular automata which one
can define on a graph (as a group, these are all examples of graph bootstrap percolation
defined in the 1960s by Bollobás under the name weak saturation [6]). What graphs have
the smallest possible percolating sets in these more general models?

Finally we report a conjecture that attracted our interest but which we did not resolve.
The diameter of a (connected) graph is the maximum distance between any pair of its
vertices. Notice that a graph with diameter no more than two has at most two blocks. A
graph is perfect if the chromatic number and clique number of every subgraph is equal.
This class of graphs includes, for instance, bipartite graphs and chordal graphs. As such,
there is relation between this conjecture and Theorem 2.20.

Conjecture 4.1. If a graph in G is perfect and its diameter is no more than two then the
graph is 2-bootstrap-good.

This conjecture was produced by the CONJECTURING program and, like the proved
conjectures reported above, only guaranteed to be true for the input graphs used when the
program was run. It is a surprising fact that many conjectures of the program are in fact
true.

N. Bushaw et al.: Bootstrap percolation via automated conjecturing 13

References
[1] J. Adler and A. Aharony, Diffusion percolation. I. Infinite time limit and bootstrap percolation,

J. Phys. A 21 (1988), 1387–1404, doi:10.1088/0305-4470/21/6/015, https://doi.org/
10.1088/0305-4470/21/6/015.

[2] J. Adler and U. Lev, Bootstrap Percolation: visualizations and applications, Brazilian J. Phys.
33 (2003), 641–644, doi:10.1590/S0103-97332003000300031, https://doi.org/10.
1590/S0103-97332003000300031.

[3] M. Aizenman and J. L. Lebowitz, Metastability effects in bootstrap percolation, J. Phys. A 21
(1988), 3801–3813, doi:10.1088/0305-4470/21/19/017, https://doi.org/10.1088/
0305-4470/21/19/017.

[4] J. Balogh, B. Bollobás, H. Duminil-Copin and R. Morris, The sharp threshold for
bootstrap percolation in all dimensions, Trans. Am. Math. Soc. 364 (2012), 2667–
2701, doi:10.1090/s0002-9947-2011-05552-2, https://doi.org/10.1090/
s0002-9947-2011-05552-2.

[5] J. Balogh, B. Bollobás and R. Morris, Bootstrap percolation in three dimensions, Ann.
Probab. 37 (2009), 1329–1380, doi:10.1214/08-aop433, https://doi.org/10.1214/
08-aop433.

[6] B. Bollobás, Weakly k-saturated graphs, in: Beiträge zur Graphentheorie (Kolloquium,
Manebach, 1967), Teubner, Leipzig, pp. 25–31, 1968.

[7] B. Bollobás, Modern Graph Theory, volume 184 of Graduate Texts in Mathematics,
Springer-Verlag, New York, 1998, doi:10.1007/978-1-4612-0619-4, https://doi.org/
10.1007/978-1-4612-0619-4.

[8] B. Bollobás, P. Smith and A. Uzzell, Monotone cellular automata in a random environment,
Comb. Probab. Comput. 24 (2015), 687–722, doi:10.1017/s0963548315000012, https://
doi.org/10.1017/s0963548315000012.

[9] A. Brandstädt, F. Dragan, V. Chepoi and V. Voloshin, Dually chordal graphs, SIAM J. Dis-
crete Math. 11 (1998), 437–455, doi:10.1137/s0895480193253415, https://doi.org/
10.1137/s0895480193253415.

[10] R. Cerf and E. Cirillo, Finite size scaling in three-dimensional bootstrap percolation, Ann.
Probab. 27 (1999), 1837–1850, doi:10.1214/aop/1022677550, https://doi.org/10.
1214/aop/1022677550.

[11] R. Cerf and F. Manzo, The threshold regime of finite volume bootstrap percolation, Stochas-
tic Process. Appl. 101 (2002), 69–82, doi:10.1016/s0304-4149(02)00124-2, https://doi.
org/10.1016/s0304-4149(02)00124-2.

[12] R. Cerf and F. Manzo, Nucleation and growth for the Ising model in d dimensions at very low
temperatures, Ann. Probab. 41 (2013), 3697–3785, doi:10.1214/12-aop801, https://doi.
org/10.1214/12-aop801.

[13] J. Chalupa, G. R. Reich and P. L. Leath, Inverse high-density percolation on a Bethe lattice, J.
Statist. Phys. 29 (1982), 463–473.

[14] D. G. Corneil, H. Lerchs and L. S. Burlingham, Complement reducible graphs, Discrete Appl.
Math. 3 (1981), 163–174, doi:10.1016/0166-218x(81)90013-5, https://doi.org/10.
1016/0166-218x(81)90013-5.

[15] M. Dairyko, M. Ferrara, B. Lidický, R. Martin, F. Pfender and A. J. Uzzell, Ore and chvátal-
type degree conditions for bootstrap percolation from small sets, 2016, arXiv:1610.04499
[math.CO].

https://doi.org/10.1088/0305-4470/21/6/015
https://doi.org/10.1088/0305-4470/21/6/015
https://doi.org/10.1590/S0103-97332003000300031
https://doi.org/10.1590/S0103-97332003000300031
https://doi.org/10.1088/0305-4470/21/19/017
https://doi.org/10.1088/0305-4470/21/19/017
https://doi.org/10.1090/s0002-9947-2011-05552-2
https://doi.org/10.1090/s0002-9947-2011-05552-2
https://doi.org/10.1214/08-aop433
https://doi.org/10.1214/08-aop433
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1017/s0963548315000012
https://doi.org/10.1017/s0963548315000012
https://doi.org/10.1137/s0895480193253415
https://doi.org/10.1137/s0895480193253415
https://doi.org/10.1214/aop/1022677550
https://doi.org/10.1214/aop/1022677550
https://doi.org/10.1016/s0304-4149(02)00124-2
https://doi.org/10.1016/s0304-4149(02)00124-2
https://doi.org/10.1214/12-aop801
https://doi.org/10.1214/12-aop801
https://doi.org/10.1016/0166-218x(81)90013-5
https://doi.org/10.1016/0166-218x(81)90013-5
https://arxiv.org/abs/1610.04499

14 Ars Math. Contemp. 23 (2023) #P3.06

[16] D. Freund, M. Poloczek and D. Reichman, Contagious sets in dense graphs, 2015,
arXiv:1503.00158 [math.CO].

[17] D. Freund, M. Poloczek and D. Reichman, Contagious sets in dense graphs, Eur. J. Comb.
68 (2018), 66–78, doi:10.1016/j.ejc.2017.07.011, https://doi.org/10.1016/j.ejc.
2017.07.011.

[18] K. Gunderson, Minimum degree conditions for small percolating sets in bootstrap percolation,
2017, arXiv:1703.10741 [math.CO].

[19] A. E. Holroyd, Sharp metastability threshold for two-dimensional bootstrap percolation,
Probab. Theory Relat. Fields 125 (2003), 195–224, doi:10.1007/s00440-002-0239-x, https:
//doi.org/10.1007/s00440-002-0239-x.

[20] S. Kirkpatrick, W. W. Wilcke, R. B. Garner and H. Huels, Percolation in dense storage arrays,
Phys. A 314 (2002), 220–229, doi:10.1016/s0378-4371(02)01153-6, https://doi.org/
10.1016/s0378-4371(02)01153-6.

[21] C. E. Larson and N. Van Cleemput, Automated conjecturing I: Fajtlowicz’s Dalmatian heuristic
revisited, Artif. Intell. 231 (2016), 17–38, doi:10.1016/j.artint.2015.10.002, https://doi.
org/10.1016/j.artint.2015.10.002.

[22] C. E. Larson and N. Van Cleemput, Automated conjecturing III: Property-relations conjectures,
Ann. Math. Artif. Intell. 81 (2017), 315–327, doi:10.1007/s10472-017-9559-5, https://
doi.org/10.1007/s10472-017-9559-5.

[23] E. Riedl, Largest and smallest minimal percolating sets in trees, Electron. J. Comb. 19 (2012),
research paper p64, 18, doi:10.37236/2152, https://doi.org/10.37236/2152.

[24] P. D. Seymour and R. W. Weaver, A generalization of chordal graphs, J. Graph Theory
8 (1984), 241–251, doi:10.1002/jgt.3190080206, https://doi.org/10.1002/jgt.
3190080206.

[25] S. Ulam, Random processes and transformations, in: Proceedings of the International Congress
of Mathematicians, Vol. 2, Cambridge, Mass., 1950, Amer. Math. Soc., Providence, R. I., 1952
pp. 264–275.

[26] J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, Cham-
paign, 1966.

[27] A. Wesolek, Bootstrap percolation in Ore-type graphs, 2019, arXiv:1909.04649
[math.CO].

https://arxiv.org/abs/1503.00158
https://doi.org/10.1016/j.ejc.2017.07.011
https://doi.org/10.1016/j.ejc.2017.07.011
https://arxiv.org/abs/1703.10741
https://doi.org/10.1007/s00440-002-0239-x
https://doi.org/10.1007/s00440-002-0239-x
https://doi.org/10.1016/s0378-4371(02)01153-6
https://doi.org/10.1016/s0378-4371(02)01153-6
https://doi.org/10.1016/j.artint.2015.10.002
https://doi.org/10.1016/j.artint.2015.10.002
https://doi.org/10.1007/s10472-017-9559-5
https://doi.org/10.1007/s10472-017-9559-5
https://doi.org/10.37236/2152
https://doi.org/10.1002/jgt.3190080206
https://doi.org/10.1002/jgt.3190080206
https://arxiv.org/abs/1909.04649

	Introduction
	History
	Conjecturing
	Definitions

	Lemmata (useful lemmas)
	Which graphs are bad?
	What is required to be good?
	What will guarantee goodness?

	Which Kneser graphs are good?
	Conclusion and further work

