
This article was downloaded by: [128.172.48.131] On: 02 February 2024, At: 11:49
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Data Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Conjecturing-Based Discovery of Patterns in Data
J. Paul Brooks, David J. Edwards, Craig E. Larson, Nico Van Cleemput

To cite this article:
J. Paul Brooks, David J. Edwards, Craig E. Larson, Nico Van Cleemput (2024) Conjecturing-Based Discovery of Patterns in Data.
INFORMS Journal on Data Science

Published online in Articles in Advance 02 Feb 2024

. https://doi.org/10.1287/ijds.2021.0043

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2024, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijds.2021.0043
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Conjecturing-Based Discovery of Patterns in Data
J. Paul Brooks,a,* David J. Edwards,b Craig E. Larson,c Nico Van Cleemputd

a Department of Information Systems, Virginia Commonwealth University, Richmond, Virginia 23284; b Department of Statistical Sciences and
Operations Research, Virginia Commonwealth University, Richmond, Virginia 23284; c Department of Mathematics and Applied
Mathematics, Virginia Commonwealth University, Richmond, Virginia 23284; d Department of Applied Mathematics, Computer Science and
Statistics, Ghent University, 9000 Ghent, Belgium
*Corresponding author
Contact: jpbrooks@vcu.edu, https://orcid.org/0000-0003-0423-8422 (JPB); dedwards7@vcu.edu (DJE); clarson@vcu.edu (CEL);
nico.vancleemput@gmail.com (NVC)

Received: September 18, 2021
Revised: July 28, 2022; March 19, 2023;
August 13, 2023; December 2, 2023
Accepted: December 15, 2023
Published Online in Articles in Advance:
February 2, 2024

https://doi.org/10.1287/ijds.2021.0043

Copyright: © 2024 INFORMS

Abstract. We propose the use of a conjecturing machine that suggests feature relation
ships in the form of bounds involving nonlinear terms for numerical features and Boolean
expressions for categorical features. The proposed CONJECTURING framework recovers
known nonlinear and Boolean relationships among features from data. In both settings,
true underlying relationships are revealed. We then compare the method to a previously
proposed framework for symbolic regression on the ability to recover equations that are
satisfied among features in a data set. The framework is then applied to patient-level data
regarding COVID-19 outcomes to suggest possible risk factors that are confirmed in the
medical literature. Discovering patterns in data is a first step toward establishing causal
relationships, which can be the basis for effective decision making.

Data Ethics & Reproducibility Note: Code and data to reproduce results are available here: https://github.
com/jpbrooks/conjecturing. COVID-19 synthetic patient data were obtained as part of the Veterans
Health Administration (VHA) Innovation Ecosystem and precisionFDA COVID-19 Risk Factor
Modeling Challenge and are used here with permission from the Food and Drug Administration
(FDA). The e-companion is available at https://doi.org/10.1287/ijds.2021.0043.

History: Olivia Sheng served as the senior editor for this article.

Keywords: automated conjecturing • computational scientific discovery • interpretable artificial intelligence • nonlinear pattern discovery •
Boolean pattern discovery

1. Introduction
Modern machine learning methods allow one to leverage
complex relationships present in data to generate accu
rate predictions but do not reveal them to the investiga
tor. We propose an automated conjecturing framework
for discovering nonlinear and Boolean relationships
among the features in a given data set. Our primary goal
is discovery—to provide the investigator with a manage
able number of suggested relationships to inspire future
investigation for validation.

The nonlinear relationships are produced in the form
of bounds. Bounds are useful for scientific discovery
from numeric data because they (1) suggest direct and
indirect relationships among features, (2) suggest a func
tional form for the relationships, and (3) can subse
quently be used as Boolean features (e.g., is this bound
satisfied by an observation?) for discovering more com
plex Boolean relationships. Whereas previous related
approaches seek to find equations for numeric data, our
CONJECTURING method produces bounds for numeric
data, Boolean expressions for discrete data, and bounds
and Boolean expressions for mixed data.

Udrescu and Tegmark (2020) proposed a system
called AI FEYNMAN that combines deep learning with
methods for symbolic regression to recover nonlinear
relationships in data. Impressively, they recover over 100
equations of varying complexity from data. In contrast to
AI FEYNMAN, our CONJECTURING framework uses Fajtlo
wicz’s Dalmatian heuristic (Fajtlowicz 1995) to discover
bounds rather than equations. Further, our framework
can also be applied to categorical data to discover Bool
ean relationships among features and already-discovered
bounds. This work represents the first application of the
Dalmatian heuristic to learning both nonlinear and Bool
ean relationships from data. The bounds and conditions
produce interpretable yet complex relationships.

2. Background and Previous
Related Work

In this section, we provide background on our CONJECTUR

ING framework, including examples of uses of bounds
and sufficient conditions, a description of the core algo
rithm, and a survey of previous related work.

1

INFORMS JOURNAL ON DATA SCIENCE
Articles in Advance, pp. 1–24

ISSN 2694-4022 (print), ISSN 2694-4030 (online) https://pubsonline.informs.org/journal/ijds

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

mailto:jpbrooks@vcu.edu
https://orcid.org/0000-0003-0423-8422
mailto:dedwards7@vcu.edu
mailto:clarson@vcu.edu
mailto:nico.vancleemput@gmail.com
https://doi.org/10.1287/ijds.2021.0043
https://github.com/jpbrooks/conjecturing
https://github.com/jpbrooks/conjecturing
https://doi.org/10.1287/ijds.2021.0043

2.1. Conjectured Bounds and
Sufficient Conditions

The algorithm we use to conjecture feature relationships
is an adaptation of an algorithm that was originally
designed to conjecture relationships for mathematical
objects. To illustrate the potential value of bounds and
sufficient conditions, we describe two problems and rele
vant results from graph theory. This paper extends these
ideas regarding bounds and sufficient conditions to
learning from data.

A graph is a collection of nodes, V, and edges, E, that
are ordered pairs of nodes. Consider the problem of find
ing bounds for the independence number of a graph.1 It
is well-known that the linear programming (LP) relaxa
tion of an appropriate integer program provides an
upper bound on the independence number (Schrijver
2003). The Lovász ϑ number of a graph also provides an
upper bound that is known to be no larger than the LP
relaxation bound for any graph (Lovász 1979). Therefore,
the Lovász ϑ bound dominates the LP relaxation bound,
and such relationships are commonly pursued. How
ever, relationships among bounds can be more nuanced.
Consider a third bound on the independence number
derived by Haemers (1979). For some graphs, it is a
stronger bound than Lovász ϑ, whereas on other graphs,
it is a weaker bound; for some graphs, Lovász ϑ is a
sharp bound and Haemers’s bound is not whereas for
other graphs, Haemers’s bound is a sharp bound, and
Lovász ϑ is not. It remains an open question whether
there are a “small” number of bounds where the largest
value for any graph would provide a sharp bound on
the independence number. In this paper, we describe a
computational approach to discover bounds among
numeric features in a data set. As with the independence
number, collections of bounds can provide valuable
insight into relationships for the system from which the
data were collected.

Now consider the problem of finding sufficient condi
tions for a graph to be Hamiltonian.2 Chvátal (1972)
proved that for a graph G with certain conditions on the
vertex degrees, G is Hamiltonian. Also, Chvátal and
Erdös (1972) proved that if a graph satisfies a connectiv
ity condition, then it is Hamiltonian. These are two con
ditions that are sufficient for a graph to be Hamiltonian,
but neither implies the other. Some graphs satisfy both
conditions, some graphs satisfy one condition, and some
graphs satisfy neither condition. The existence and dis
covery of a (small) set of sufficient conditions that charac
terize all Hamiltonian graphs remain an open area of
research. The pursuit of sufficient conditions of graph
properties such as Hamiltonicity mirrors that of bounds
(Larson and Van Cleemput 2017). In the context of learn
ing from data, we show how categorical data, together
with bounds discovered among numeric features, can be
used as input to a computational approach for generat
ing sufficient conditions for a property of interest.

2.2. The Dalmatian Heuristic
Our CONJECTURING framework is based on an implemen
tation of Fajtlowicz’s Dalmatian heuristic (Fajtlowicz
1995, Larson and Van Cleemput 2017). The heuristic was
originally implemented in GRAFFITI (Fajtlowicz 1995),
which was the first program to produce research conjec
tures that led to new mathematical theories. The pro
gram produces statements that are relations between
mathematical invariants, which are numerical attributes
of examples. Recent implementations of the Dalmatian
heuristic have been applied to the discovery of relation
ships for graphs (Larson and Van Cleemput 2016) and
game strategies (Bradford et al. 2020). The heuristic was
adapted to work with properties that are Boolean attri
butes of examples by Larson and Van Cleemput (2017).
We built our framework using a more recent implemen
tation of the Dalmatian heuristic available.3

We now describe invariant conjecturing using Fajtlo
wicz’s Dalmatian heuristic. The inputs include the fol
lowing. Let E be a set of examples of a given type (e.g.,
graphs or data observations). Let A � {α1,α2, : : : ,αm} be
real number invariants. In this work, the examples are n
data observations, and the invariants are m numeric fea
tures. The real-numbered value of example i for invari
ant αj is αj(i) � xij for i � 1, : : : , n and j � 1, : : : , m. Let O
be a collection of unary operators and binary operators.
Examples of unary operators include adding one, squar
ing, square-rooting, and division by two. Binary opera
tors include addition, multiplication, and subtraction.
Let α∗ ∈ A be the invariant for which upper and lower
bounds are of interest, and let α∗(i) be the value of the
invariant of interest for example i.

The aim is to generate conjectured bounds that are
true for any realization of input examples E. The Dalma
tian heuristic provides criteria for generating conjectured
bounds that are the best for E. Algorithm 1 provides a
way to generate expressions of increasing complexity,
apply the heuristic, and store conjectures. The complexity
of an expression is the number of nodes in the corre
sponding expression tree (Figure 1) and is the sum of the
number of invariants, number of unary operators, and
number of binary operators. The algorithm proceeds by
generating unlabeled trees and then labeling the nodes
with operators and invariants. Expressions satisfying the
Dalmatian heuristic conditions are retained as conjec
tures C. For a conjecture c ∈ C, let c(i) be the conjectured
bound for example i.

With examples E, invariants A, operators O, invariant
of interest α∗, an upper limit on the proportion of missing
values allowed for an invariant skips, and a direction
indicating if the algorithm will produce upper or lower
bounds (UPPER or LOWER), procedure CONJECTURING-
INV is called (Algorithm 1, line 1). The number of unary
nodes u and binary nodes b of an expression tree are ini
tialized to zero, and the conjecture C is initialized to the
empty set (Algorithm 1, line 2). Line 3 of Algorithm 1

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
2 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

refers to the stopping criteria of the expression generator.
For invariant conjecturing for upper bounds, if the mini
mum conjectured bound is tight for each example (i.e.,
minc∈Cc(i) � α∗(i) for i ∈ E), then the expression generator
is stopped. Otherwise, expression generation continues
until a time limit is reached. If exact bounds are not dis
covered for each example, more complex expressions are
generated for larger time limits.

Line 4 calls a procedure to generate a tree, the branch
ing nodes of which will be operators and the leaf nodes
of which are invariants. Lines 5–11 enumerate every tree
where each vertex connected to a leaf node has degree
one or two. These branching nodes will correspond to
unary or binary operators, respectively, when the tree is
labeled. The leaf nodes will correspond to invariants.
Unlabeled trees are grown recursively, and then the
nodes are labeled with operators and invariants.

The procedure GENERATETREE (Algorithm 1, line 4) cre
ates a new tree with a single node and then calls proce
dure GENERATETREEREC to add new nodes until there are u
unary nodes and b binary nodes. The procedure GENERA

TETREEREC (Algorithm 1, line 19) either calls GENERATELA

BELEDTREE to apply labels by assigning invariants to leaf
nodes and operators to branching nodes to generate an

expression (Algorithm 1, line 21) or adds nodes to grow
the tree (lines 23–32).

The procedure GENERATELABELEDTREE (Algorithm 1, line
35) takes as input a tree with u unary nodes and b binary
nodes. Line 36 orders the nodes so that child nodes
appear before their parent. Then line 37 creates a set of
labeled trees. The leaf nodes are labeled with invariants,
and the branching nodes are labeled with operators.
Invariants with more than skips missing values among
examples are not used for labeling. For the commutative
binary operators, the left child is larger than the right if
the left has more nodes. If the number of nodes is equal,
we use the lexicographically largest string of labels.
Because the suffix order guarantees that all subtrees are
fully labeled before their parent is labeled, this is an
unambiguous definition. Examples of labeled expression
trees are given in Figure 1.

Lines 39 and 41 are the Dalmatian heuristic. A conjec
tured upper bound c is only retained in the database of
conjectures C if the bound passes the following two tests:

1. (Truth test). The candidate conjecture α∗(i) ≤ c(i) is
true for all examples i ∈ E, and

2. (Nondominance test.) There is an example i where
c(i) < min{c′(i) : c′ ∈ C \ {c}}. That is, the candidate con
jecture would give a better bound for α∗(i) than any
previously conjectured (upper) bound.

Line 41 ensures that the number of conjectures is no
larger than the number of examples, that is, |C | ≤ |E | .

The procedure is the same for generating lower
bounds, with the only difference being how the Dalma
tian heuristic criteria are evaluated in lines 39 and 41.

The computational requirements of Algorithm 1 in
crease exponentially with the number of invariants and
with the number of operators. The computation time
per expression increases with the number of examples
because of the check in step 39. To facilitate generation of
more candidate expressions in less time, one can use
fewer examples as input to the algorithm. To achieve
additional efficiency, we implement the following design
choice. In our implementation, when a tree is labeled,
operators can be reused, but invariants cannot. We make
this design choice so that more expressions can be gener
ated in a smaller amount of time. In Section 5.4, we will
demonstrate how this limitation can be overcome in
situations where repeating invariants is warranted.

Algorithm 1 (Invariant Conjecturing)
Input: Examples E, Invariants A, operators O,
invariant of interest α∗, invariant missing value limit
skips, direction (UPPER or LOWER).
Output: Conjectured C in the form of conjectured
bounds on the invariant of interest α∗.
1: procedure CONJECTURING-INV
2: Set u� 0, b� 0, C � ∅.
3: while not stopped do
4: GENERATETREE(u, b).

Figure 1. Expression Trees

(a)

(b)

Notes. (a) An upper bound on square footage x1=x2 + x3, where x1 is
300K, x2 is pricePerSquareFoot, and x3 is bathrooms. (b) Gravitational
force km1m2=r2.

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 3

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

5: if b� 0 then
6: Set b � ⌈u=2⌉.
7: Set u� 0.
8: else
9: b��.

10: u+ � 2.
11: end if
12: end while
13: return C.
14: end procedure
15: procedure GENERATETREE(u, b)
16: Set tree�new tree with single node.
17: GENERATETREEREC(tree, u, b).
18: end procedure
19: procedure GENERATETREEREC(tree, u, b)
20: if number of unary nodes�� u and number of

binary nodes�� b then
21: GENERATELABELEDTREE(tree).
22: else
23: for all nodes v on the second-deepest level

that have at most 1 child and have no nodes
at the same level to their right with at least 1
child do

24: Add child to v.
25: GENERATETREEREC(tree, u, b).
26: Remove that child from v.
27: end for
28: for all nodes v on the deepest level do
29: Add child to v.
30: GENERATETREEREC(tree, u, b).
31: Remove that child from v.
32: end for
33: end if
34: end procedure
35: procedure GENERATELABELEDTREE(tree)
36: Order the nodes in a suffix order.
37: Recursively label each node in this ordered array

with either an invariant, a unary operator, or a
binary operator depending on its degree. For
commutative binary operators we only label a
vertex if its left child is larger than its right child.

38: for each fully labeled tree do
39: if the corresponding bound c is valid for all

examples in E and is not dominated by exist
ing bounds in C. then

40: Set C � C ∪ c.
41: Remove dominated conjectures from C.
42: end if
43: end for
44: end procedure

Figure 2 displays upper bounds in panel (a) and lower
bounds in panel (b) derived for test instances for data
generated based on a formula for gravity. The gray
curves correspond to bounds, and each must be the best
on at least one training example instance in order to be

retained. More details on this experiment are provided
in Sections 3.1 and 4.1.

Algorithm 1 can be adapted for property conjecturing
with few modifications. We now detail the differences.
Let E be a set of examples, and let Π � {π1,π2, : : : ,πm}

be properties. The examples are n data observations, and
the properties are m Boolean features. The truth value of
example i for property πj is πj(i). Let O be the following
collection of operators: NOT (¬), AND (&), OR (|), XOR
(exclusive or) (�), and IMPLIES (→). NOT is a unary
operator, and the remaining operators are binary opera
tors. Let π∗ ∈Π be the property for which sufficient
and/or necessary conditions are of interest, and let
π∗(i) be the truth value of the property of interest for
example i.

The aim is to generate conjectured sufficient or neces
sary conditions for the property of interest that are valid
for any realization of input examples E. The algorithm
for property conjecturing procedure CONJECTURING-PROP
generates unlabeled trees as in Algorithm 1 but then
labels the nodes with operators and properties. Logical
expressions satisfying the Dalmatian heuristic conditions
are retained as conjectures C. For a conjecture c ∈ C, let
c(i) be the conjectured truth value for example i.

The inputs to property conjecturing are examples E,
properties Π, operators O, a property of interest π∗, and
a direction (SUFFICIENT, NECESSARY) indicating if the
algorithm will produce sufficient or necessary conditions
for the property of interest.

The stopping criterion for property conjecturing for
the case that direction is SUFFICIENT is obtaining a set
of conjectures where, for every example with π∗(i) �
true, each example evaluates to true for at least one con
jecture. Otherwise, expression generation continues until
a time limit is reached.

The Dalmatian heuristic for property conjectures is
applied as follows. A conjectured sufficient condition c is
only retained in the database of conjectures C if the
expression passes the following two tests:

1. (Truth test) For all examples i ∈ E for which c(i) is
true, then π∗(i) is also true, and

2. (Nondominance test.) The number of examples i ∈ E
for which c(i) is true is not a subset of examples that
evaluate to true for any previously conjectured suffi
cient condition.

To generate necessary conditions for π∗, one can gen
erate sufficient conditions for ¬π∗ (NOT π∗).

Figure 3(a) depicts candidate conditions for examples
with the property of interest (green) and those without
(red). Conditions 1 and 2 are sufficient conditions for
subsets of examples with the property of interest. Condi
tion 3 evaluates to true for examples with and without
the property of interest and would therefore not be
retained. The goal of property conjecturing is to find a
set of sufficient conditions that evaluate to true for all

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
4 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

examples with the property of interest and for none of
the examples without the property of interest, as illus
trated in Figure 3(b).

2.3. Other Related Work
In this section, we explain how our work is related to pre
vious work in automated scientific discovery, machine
learning interpretability, automated feature engineering,
and empirical model building.

Symbolic regression has been used as a tool for auto
mated scientific discovery. Symbolic regression is the use
of genetic programming (GP) to approximate a target
function on training data and generalize to produce pre
dictions on new data (Nicolau and Agapitos 2021). Until
the work of Schmidt and Lipson (2009), the focus was on
improving prediction accuracy by approximating an

underlying function rather than a focus on discovering
true functional relationships among features. Schmidt
and Lipson (2009) extend previous work to develop a
system for discovering laws for dynamical systems
by considering relationships among derivatives. Their
work led to the development of a software, EUREQA.
More recently, Udrescu and Tegmark (2020) combined a
variety of strategies, including dimensional analysis,
symmetry identification, neural network training, and
brute-force enumeration, into a framework called AI
FEYNMAN to recover true physical functional forms from
data. Petersen et al. (2021) propose a method for deep
symbolic regression (DSR) that combines reinforcement
learning with a recurrent neural network model. They
compare their approach with methods based on priority
queue training (PQT) proposed by Abolafia et al. (2018)

Figure 2. (Color online) Invariant Conjecturing

Notes. (a) Upper bounds and (b) lower bounds generated for gravitational force using CONJECTURING-INV, the invariant version of the conjectur
ing algorithm. Instances from the training data are on the x axis.

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 5

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

and the traditional genetic programming approach. Our
experiments include comparisons with each of these
methods in the ability to recover equations from data.

Other frameworks have been proposed to computa
tionally generate conjectures from data and discover
scientific laws. Data smashing is introduced by Chatto
padhyay and Lipson (2014) as a method for computing
dissimilarities from streams of data (e.g., electroen
cephalogram data) to aid in revealing relationships
among observations. Jantzen (2016) proposes an algo
rithm with the similar purpose of detecting types of
dynamical systems called dynamical kinds. Subse
quently, these kinds “are then targets for law-like gen
eralization” (Jantzen 2016). Whereas Jantzen’s work

provides a method for discovering the kinds, it does
not suggest how to recover the “laws.” It is these rela
tionships that we aim to discover with the CONJECTURING
framework.

Our work is distinguished from these previous works
in that (1) we focus on generating bounds for invariants
that serve as hypotheses for the investigator rather than
recovering true functional forms or generating accurate
predictions, (2) our invariant conjecturing algorithm is
paired with a property conjecturing algorithm for dis
covering both nonlinear bounds and Boolean relation
ships, (3) our framework is designed for a given static
observational data set rather than on discovering laws for
dynamical systems, and (4) rather than a stochastic search

Figure 3. (Color online) Schematic of Property Conjecturing

Notes. In panel (a), conditions 1 and 2 evaluate to true for a subset of examples with the property of interest and for no samples that do not have
the property of interest. Condition 3 evaluates to true for examples with and without the property of interest, and so, it is discarded. In panel (b),
the union of sufficient conditions covers all examples with the property of interest.

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
6 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

over the space of functional forms, our CONJECTURING sys
tem leverages sophisticated techniques for enumerating
expressions of increasing complexity (described in Larson
and Van Cleemput (2016) for “noiseless” data involving
mathematical objects such as graphs). In our system, the
human remains “in the loop” to evaluate the plausibility
of suggested bounds and conditions.

Brunton et al. (2016) introduce SINDy for combining
sparse regression and expert knowledge to develop
models of dynamical systems. We adopt a similar
approach to incorporating prior knowledge in Section
5.4 for the Nguyen benchmark suite (Nguyen et al. 2011)
where we provide the CONJECTURING framework with
candidate nonlinear functions as building blocks. Unlike
our CONJECTURING framework, theirs is designed for
recovering equations governing dynamical systems
rather than bounds, and theirs is not capable of recover
ing Boolean relationships.

Langley (2019) provides a review of past efforts in
computational scientific discovery. Several frameworks
have their origins in analyzing mass spectroscopy and
other electrochemical data. Bacon (Langely et al. 1987) is
a general framework for scientific discovery based on
suggesting and executing a series of designed experi
ments. Tallorin et al. (2018) proposed a method called
POOL that uses Bayesian optimization and machine
learning in an iterative fashion for experiments to dis
cover peptide substrates for enzymes. Bacon and POOL
both make recommendations regarding additional data
to collect, whereas our system assumes that a fixed data
set is provided that may or may not be the result of a
designed experiment.

Precise definitions of “explainability” and “interpre
tability” are still being developed (Lu et al. 2019,
Fürnkranz et al. 2020, Vilone and Longo 2020), as
research in the area has rapidly accelerated. According to
the convention of Rudin (2019), explainability is con
cerned with post hoc analyses of black box models to cre
ate simple explanations of model behavior. Motivated by
observed accuracies of deep learning models, work in
this area includes identifying important features for pre
diction, building simple local models, conducting sensi
tivity analyses, and deriving prototype examples (Samek
and Müller 2019, Elton 2020). Tsang et al. (2018a, b, 2020)
develop neural network frameworks for identifying sets
of features for which there is an interaction—a nonaddi
tive relationship among predictive features that influence
a response value. These methods provide explainability
in that they identify sets of features that interact, but the
framework is not designed to reveal the functional form
of the nonlinear interaction.

Rudin (2019) advocates the development of interpret
able models where the mechanisms for predictions are
simple relationships that are readily apparent to the
investigator. Much of the recent work in this area is in

the development of decision rules (e.g., Hammer and
Bonates 2006, Dash et al. 2018, Bellomarini et al. 2020) or
decision lists and trees (e.g., Wang and Rudin 2015, Bert
simas and Dunn 2017, Wang et al. 2017, Rudin and Erte
kin 2018, Verwer and Zhang 2019, Aghaei et al. 2021,
Blanquero et al. 2021, Lemadjeng et al. 2023). Different
from these works, our CONJECTURING framework auto
mates the discovery of nonlinear features. In addition, as
with work on decision rules in general, our framework
can combine the discrete features in data with the dis
covered nonlinear features to discover a potentially
richer set of Boolean relationships when compared with
optimization-based trees and decision lists.

Khurana et al. (2018) propose a system that leverages
reinforcement learning to search expression trees for pre
dictive features. EXPLOREKIT (Katz et al. 2016) is a frame
work for automatic feature engineering that combines
features using basic arithmetic operations and then uses
machine learning to rank and select those with high pre
dictive ability. THE DATA SCIENCE MACHINE (Kanter and
Veeramachaneni 2015) automatically generates features
for entities in relational databases with possible depen
dencies between tables followed by singular value
decomposition. In none of these works is model trans
parency evaluated but, rather, only model performance.
An important distinction of our work from these is that
they focused on improving prediction accuracy, some
times at the expense of understandable features, and not
on scientific discovery.

Traditional statistical methods for empirical model
building (e.g., regression analysis) tend to focus on first-
and second-order polynomial models; interaction terms,
up to a certain degree, are often included. Empirical
models are intended to provide adequate prediction per
formance while also providing a simple assessment of
feature importance via model coefficients. Techniques
such as all-subsets, stepwise selection, and regularization
methods (e.g., LASSO (Tibshirani 1996)) are commonly
used to perform feature selection over model spaces of
increasing complexity. However, domain knowledge is
typically required for reciprocal or nonpolynomial rela
tionships. Our CONJECTURING framework provides a
search over a much broader class of nonlinear functions.

3. Two Motivating Examples
In this section, we describe two data sets where a
“typical” knowledge discovery workflow fails to reveal
important relationships among features.

Research on machine learning does, of course, lead
to conjectured relationships between variables, which
are, in turn, used to make predictions of one or more
variables in terms of others. A trained neural net, for
instance, can be viewed as a black box representing a
function that produces an output for every input in its

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 7

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

domain. These functions are complex and of a different
character than classical scientific laws: in particular, there
is little hope of deriving these functions or relationships
from simpler existing laws. Our CONJECTURING framework
aims to help fill this gap in current capabilities.

3.1. Discovering Gravity
In this example, a numeric invariant of interest is deter
mined by a more complex nonlinear relationship with
three numeric predictors. Consider measurements that
include the masses of two objects, m1 and m2; their dis
tance, r; and the gravitational force between them, F.
The goal is to recover the dependence of F on m1, m2,
and r, or

F � k m1m2

r2 ,

where k is the gravitational constant. Following the dem
onstration by Langely et al. (1987), we create a fictional
data set using a predefined value for k that is a random
number between zero and one. For our illustrative exam
ple, we generated 1,000 training data points and 1,000
test data points with k� 0.057098. The choice of k was
randomly generated. Values for m1, m2, and r are sam
ples from Uniform (1,100,000) distributions, and F is cal
culated for each sample with no noise.

A linear regression model will fail to capture the non
linear interaction of the variables. Off-the-shelf machine
learning methods such as random forests and neural net
works can leverage the nonlinear relationship in the data
but cannot present the relationship to the investigator. In
the next section, we propose a framework for producing
bounds on F that are functions of the other features.

3.2. Discovering an Interaction in Real Estate
Valuation Data

The second example is a case where a Boolean variable
of interest is almost completely determined by the
product of two numeric features in the data set; that is,
the second-order interaction term completely defines
the relationship.

Consider a data set on residential real estate properties
for sale obtained from https://www.redfin.com. The
goal is to recover a relationship between price (above or
below $300,000), price per square foot, and total square
footage.

This data set includes both the price per square foot
and total square footage along with eight additional fea
tures such as the number of bathrooms and bedrooms.
The property of interest (above versus below) can be
determined (with some rounding error) by multiplying
the price per square foot by square footage and setting a
threshold. Thus, the interaction of price per square foot
and square footage, hereafter called the active interaction,
almost completely describes the relationship between
the predictors and response. Data are partitioned into a

training data set with 1,000 houses and a test data set with
30,156 houses. In the next section, we leverage our frame
work for invariant bounds and then extend it to produce
Boolean relationships to discover the active interaction
term and how it is related to class membership.

Standard machine learning methods are able to
achieve high rates of prediction accuracy, and some can
identify the terms of the active interaction term as impor
tant with this data, but to our knowledge, none can help
the investigator discover that the terms should be
multiplied.

4. A Conjecturing Framework for
Discovering Patterns in Data

We now describe a framework that leverages a conjectur
ing algorithm to discover nonlinear and Boolean feature
relationships in data. All experiments were run on a
computer with an Intel i7-2600 CPU @ 3.4 GHz and 16
GB RAM.

4.1. Conjecturing for Nonlinear Relationships
The invariant version of the conjecturing method (proce
dure CONJECTURING-INV) can be used for discovering
nonlinear relationships in data. Invariant conjectures are
generated that provide upper and lower bounds on the
invariant of interest. These conjectures are the nonlinear
functions that can be used as new features and/or as a
complete model for the system.

For the gravity case from Section 3.1, the invariants are
A � {F, m1, m2, r}, and the invariant of interest is the force
F. The examples, E, are the observations in the data.

The CONJECTURING framework is not designed to
recover constants such as the gravitational constant k. In
general, for a functional relationship with a constant k
such that 0 < k < 1, the expression without the constant
provides an upper bound for the response. In cases
where the constant is larger than one, the expression
without the constant provides a lower bound.

For our example, CONJECTURING-INV returns 19 upper
bounds and 24 lower bounds for F. Among the upper
bounds is

F ≤ m1m2=r2,

which approximates the true gravity relationship used to
generate the data. The bound does not include the con
stant k. Other bounds generated by CONJECTURING-INV
include

F ≤ 2m2=
ffiffi
r
√

, (1)
F ≤ 2 |m1 �m2 | , (2)
F ≥ 8m2=r2, (3)
F ≥ �1=(r� 2m2): (4)

For ease in visualization, eight of the upper bounds and
15 of lower bounds for F were selected and are depicted

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
8 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://www.redfin.com

in Figure 2. The upper bound, m1m2=r2, in Figure 2(a) is
blue, whereas the true value, km1m2=r2, is gold.

As the primary goal of our approach is discovery, the
bounds produced are suggestions that require further
validation. We consider it a success that the relationship
F∝m1m2=r2 is included in one of the bounds. Among
the other bounds produced, we see that true relation
ships F∝m1, F∝m2, and F∝1=r2 are all suggested, along
with false relationships F∝1=

ffiffi
r
√

and F∝1=r. Follow-up
investigations can be used to inspect these relationships
and potentially recover the gravitational constant. An
approximation of the gravitational constant of 0.057
could be represented as (+1+ 1+ 1+ 1+ 1) × 10�1�1

+ (+1+ 1+ 1+ 1+ 1+ 1+ 1) × 10�1�1�1, which, by itself
has complexity 22. The expression m1m2=r2 has complex
ity six.

In this example, the CONJECTURING framework recovers
the true nonlinear relationship up to a constant of pro
portionality along with 42 additional suggested bounds.
Therefore, isolating a single true bound, in the case
where the bound is unknown, can require additional
analysis and/or experiments. The additional bounds can
provide potential insight into feature interactions.

To investigate the potential dependence of results on
the gravitational constant k, we conduct an additional
experiment where for each of 10 replications, a different
constant k is sampled from a Uniform(0,1) distribution.
For each value of k, CONJECTURING-INV recovers m1m2=r2

as a conjectured upper bound for F.
In another experiment, values for m1, m2, and r are

sampled from Uniform(1,100) distributions, and the
force F is calculated for each sample. Ten data sets with
noise are created by sampling from a normal distribution
with mean zero and standard deviation 10�t multiplied
by the root mean square of the F values in the training
data for t � 9, 8, : : : , 0 so that the noise increases as t
decreases. The root mean square of F is used so that the
standard deviation of the noise distribution is adjusted
to the scale of the target invariant as in Section 5.3. Noise
is added to each calculated value for F. For t ≥ 4,
CONJECTURING-INV is able to recover the true nonlinear
relationship up to a constant of proportionality, among
other bounds.

4.2. Conjecturing for Nonlinear and Boolean
Relationships with Mixed Data

Our CONJECTURING framework for mixed data leverages
the invariant version (procedure CONJECTURING-INV) and
the property version (procedure CONJECTURING-PROP) of
the conjecturing algorithm. For mixed data, we propose
a framework to produce conjectures of nonlinear and
Boolean patterns. These conjectures can capture complex
patterns while maintaining interpretability.

We assume that we are given a data set with numeric
features N, Boolean features B, and a categorical feature
of interest with levels Y. Note that a categorical feature

with more than two levels can be converted to a series of
Boolean features. Let πy be the property that an observa
tion has value y for y ∈ Y.

For each level y ∈ Y, the algorithm discovers bounds
for the numeric features that are satisfied by each obser
vation in the class (Algorithm 2, lines 4–14). These
inequalities are converted to properties of the form “if
the inequality is satisfied, then true; false, otherwise”
(Algorithm 2, line 12). These new properties are com
bined with the original Boolean features in the data
(Algorithm 2, line 13). The properties from across all clas
ses are pooled together, the observations belonging to all
classes are pooled together as examples, and then, for
each level y ∈ Y, the property version of conjecturing is
applied to discover sufficient conditions for πy (Algo
rithm 2, lines 15–20).

We now provide further details on Algorithm 2 using
the real estate valuation case from Section 3.2 as an illus
trative example. First, we convert the categorical feature
propertyType into Boolean features condo, mobileHome, sin
gleFamily, townhouse, multiFamily2-4Unit, multifFamily5Plu
sUnit, and Other. We also add a feature that is a constant
value of 300,000 for each observation because it is the price
cutoff, and we call it 300K. The resulting 18 features are
partitioned into numeric features N � { bedrooms, bath
rooms, squareFootage, lotSize, yearBuilt, daysOnMarket, price
PerSquareFoot, hoaPerMonth, latitude, longitude, and 300K}
(Algorithm 2, line 2) and Boolean features B � { condo,
mobileHome, singleFamily, townhouse, multiFamily2-4Unit,
multifFamily5PlusUnit, Other} (Algorithm 2, line 3).

In our training set, there are 1,000 observations that
are used as examples. For each value of the property of
interest, {below, above}, the corresponding observations
serve as the examples (Algorithm 2, line 6). For each
numeric feature, upper and lower bounds on that feature
are found that are functions of the other numeric features
(Algorithm 2, lines 8 and 9). These are found by applying
the invariant relations version of the conjecturing
method (CONJECTURING-INV). For houses with property
below, there are 1,280 bounds derived. Included are plau
sible relations concerning house features that are seem
ingly irrelevant to the classification task, such as

bathrooms ≤ 2 × bedrooms (5)
bedrooms ≥ bathrooms� 1 (6)

lotSize ≥ (squareFootage� yearBuilt) × bedrooms: (7)

Also included are less interpretable bounds, such as

yearBuilt ≥ hoaPerMonth
× log(10)=log(2 × daysOnMarket) (8)

daysOnMarket ≤ ee
ffiffiffiffiffiffiffiffiffi
2×lotSize
√

(9)
hoaPerMonth ≤ 102×bathrooms + squareFootage: (10)

There are also several bounds discovered that are close
approximations of the relationship present in the active

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 9

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

interaction term, including
squareFootage ≤ 300K=pricePerSquareFoot + bathrooms

(11)
squareFootage ≤ 300K=pricePerSquareFoot + bedrooms

(12)
squareFootage ≤ 300K=pricePerSquareFoot + daysOnMarket

(13)
squareFootage ≤ 300K=(pricePerSquareFoot� 1)� 1

(14)
pricePerSquareFoot ≤ �300K=(bedrooms� squareFootage)

(15)
pricePerSquareFoot ≤ ⌈300K=squareFootage⌉ (16)

300K ≥ �(bathrooms� squareFootage) × pricePerSquareFoot:
(17)

For houses with property above, there are 1,457 bounds
derived, including a mix of simple relations and less
intuitive relations. Also included are the following three
relations that are nearly identical to the active interaction
relation:

squareFootage ≥ 300K=(pricePerSquareFoot + 1) (18)
pricePerSquareFoot ≥ 300K=squareFootage + 1 (19)

300K ≤ (pricePerSquareFoot + 1) × squareFootage: (20)

The resulting invariant relations are pooled together
(Algorithm 2, line 10). The invariant relations are encoded
as properties (Algorithm 2, line 12). The original binary
features from the data are also encoded as properties for
a total of 1,280+ 1,457+ 7 � 2,744 properties. Examples
of encoded properties from the invariant relations are

bathrooms ≤
?

2 × bedrooms (21)

(yearBuilt≥
?

hoaPerMonth
× log(10)=log(2 × daysOnMarket)) (22)

(squareFootage ≤
?

300K=pricePerSquareFoot+ bathrooms)
(23)

(squareFootage≥
?

300K=(pricePerSquareFoot+ 1)): (24)

These properties can be used as Boolean features that
indicate whether a nonlinear relationship among
numeric features is satisfied for an observation.

The properties generated for each level {below, above}
are collected in a set Π along with πy and the seven origi
nal Boolean features (Algorithm 2, line 13).

For each level {below, above}, apply the property ver
sion of conjecturing to the properties Π with the training
data observations serving as the examples E and level as
the property of interest (Algorithm 2, lines 15–20). The
result is a set of properties that are sufficient conditions
for the levels.

CONJECTURING-PROP returns only two properties. They
both approximate the underlying active interaction.

bathrooms ≥ �300K=pricePerSquareFoot
+ squareFootage→ below (25)

squareFootage ≥ (300K + 1)=(pricePerSquareFoot� 1)
→ above: (26)

An inspection of the data reveals that for some of the
houses, there is some rounding error when comparing
the price to the square footage multiplied by the price
per square foot. The conjecturing algorithm compensates
by using invariants as error terms. In the first property,
the error term is bathrooms × pricePerSquareFoot. In the
second property, the error term is squareFootage+ 1.

When these properties are applied as classification
rules for predicting whether a house will be above or
below $300,000, they produce no error on the training
data. The first property misclassifies 37 of 30,156 houses
in the test data for an accuracy of 0.999. The second prop
erty misclassifies 26 houses. The misclassified houses are
because of rounding error and miscoding of data. For
example, one house in the test data is listed as having
31,248 bathrooms, and another is listed as having a price
of $459. Despite the noise and rounding error in the data,
the CONJECTURING framework helped to discover the
active interaction term.

Algorithm 2 (Conjecturing Framework for Nonlinear and
Boolean Relationships with Mixed Data)

Input: Data observations {1, : : : , n} with numeric
features N, Boolean features B, and a categorical fea
ture of interest with levels Y; a set of invariant
operators O and a set of property operators P.
Output: A set of conjectured properties P.
1: Set P � ∅. /* Initialize properties set. */
2: Set A � {αj : j ∈N}. /* Define the set of invar

iants to be the original numeric features in the
data. */

3: Set Π � {πj : j ∈ B}. /* Define the set of prop
erties to be the original Boolean features in the
data. */

4: for y ∈ Y do /* Loop on the levels of the cate
gorical feature of interest */

5: Set R � ∅ ./* Initialize invariant relations set. */
6: Set E � {i : πy}. /* Define the set of observa

tions with level y as the examples. */
7: for j ∈N do /* Loop on original numeric fea

tures. */
8: Set RU � CONJECTURING-INV(E, A, O,αj, UPPER)

/* Submit examples, invariants, and the invariant
of interest to the invariant version of CONJECTURING

for upper bounds. */
9: Set RL � CONJECTURING-INV(E, A, O,αj, LOWER)

/* Submit examples, invariants, and the invariant

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
10 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

of interest to the invariant version of CONJECTUR

ING for lower bounds. */
10: Set R �R ∪ RU ∪ RL.
11: end for
12: Convert the new invariant relations R into

properties ΠR.
13: Set Π �Π ∪ πy ∪ΠR. /* Define the set of

properties to be the original Boolean features, the
level y, and the invariant relations properties. */

14: end for
15: for y ∈ Y do /* Loop again on the levels of the

categorical feature of interest. */
16: Set E � {1, : : : , n}. /* Use all examples. */
17: Set PS � CONJECTURING-PROP(E,Π, P,πy,

SUFFICIENT). /* Submit examples, proper
ties, and the level y as the property of interest to
the property version of CONJECTURING for suffi
cient conditions. */

18: Set PN � CONJECTURING-PROP(E,Π, P,πy,
NECESSARY). /* Submit examples, proper
ties, and the level y as the property of interest to
the property version of CONJECTURING for neces
sary conditions. */

19: Set P � P ∪ PS ∪ PN.
20: end for
21: return P.

Hereafter, we use “CONJECTURING framework” to imply:
1. In the case that all features are numeric, apply

procedure CONJECTURING-INV.
2. In the case that all features are categorical, convert

the features to a series of properties (Boolean features)
and apply procedure CONJECTURING-PROP.

3. In the case of mixed data, apply Algorithm 2.
If there is no invariant of interest or no property of

interest, each invariant and/or property can serve as the
invariant/property of interest in turn, and conjectures
can be generated for each.

5. Additional Computational Experiments
5.1. Sensitivity to the Number of Features
To investigate the impact of the number of features on
the performance of the CONJECTURING framework, we
conduct experiments adding noisy features to the grav
ity example. We use the same experimental setup as
described in Section 4.1, including a time limit of five
seconds. For ℓ � 0, : : : , 10, we add ℓ noise invariants gen
erated from a standard normal distribution and check

1. whether CONJECTURING-INV recovers m1m2=r2,
2. the number of conjectures produced,
3. the number of expressions evaluated, and
4. the number of valid expressions produced. Valid

expressions are bounds that are valid for all training
examples.

For ℓ � 0, : : : , 6, CONJECTURING-INV recovers m1m2=r2

as a conjectured upper bound, and for ℓ � 7, : : : , 10, the

bound is not recovered in the five-second time limit
because of the additional noise invariants. The number
of original invariants is five, including the force F, so in
this experiment, we can add more than 100% additional
invariants and still recover the true proportionality rela
tionship F∝m1m2=r2.

Figure 4 contains plots of the number of conjectures
produced, the number of expressions evaluated, and the
number of valid expressions produced within the five-
second time limit. The number of conjectures produced
and expressions evaluated increases as the number of
columns increases and tends to be larger for lower
bounds than upper bounds. The number of conjectures
produced ranges from 22 to 174. The number of valid
expressions fluctuates between 75,000 and 135,000, and
there is no discernible pattern effect of the number of
noise invariants ℓ. As ℓ increases, there are more in
variants available, and the number of low-complexity
expressions increases exponentially, as does the number
of low-complexity expressions comprised of the noise
invariants. Low-complexity expressions can be gener
ated and checked more quickly, which is why the
number of expressions evaluated increases with ℓ. The
number of expressions evaluated in five seconds ranges
between about 300,000 and 1.4 million.

5.2. Sensitivity to Training Examples
To investigate the effect of different subsets of training
examples on the ability of the CONJECTURING framework
to recover true relationships, we apply the framework to
the real estate experiment with 10 random samples of
1,000 training examples. We use the same experimental
setup as described in Section 2, including a time limit of
five seconds.

Table 1 contains the conjectures produced by the
CONJECTURING framework for each of the 10 replications.
As in the experiment in Section 4.2, the CONJECTURING
framework makes use of invariants and operators to
compensate for rounding error. The invariants employed
as tolerances are bathrooms and longitude. The framework
also employs operators+ 1, �1, and ⌈·⌉ to account for
deviations from the underlying active interaction. Each of
the bounds can be rewritten in terms of squareFoota
ge×pricePerSquareFoot �300K plus or minus a small
error term containing, at most, one additional invariant.
Therefore, we see that, in this instance, the method is not
sensitive to the choice of training examples. Further
experiments are needed to understand how well the
CONJECTURING framework can recover underlying relation
ships in the presence of different kinds of noise. This is
the subject of future work.

5.3. Comparison with AI FEYNMAN (Udrescu and
Tegmark 2020)

In this section, we compare the ability of CONJECTURING to
recover equations from data sets used by Udrescu and

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 11

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Tegmark (2020) with their algorithm AI FEYNMAN. We
then apply the implementation of AI FEYNMAN to the
gravity and real estate data sets described in Section 3.
We note that the primary goal of CONJECTURING is for dis
covery of nonlinear and Boolean relationships, whereas
the primary goal of AI FEYNMAN is recovery of equations.

5.3.1. Performance on Feynman Equations. We apply
CONJECTURING to the first 10 equations listed in table 4 of
Udrescu and Tegmark (2020) to draw comparisons based
on solution time and noise tolerance. We used the data
published by the authors.4 As in Udrescu and Tegmark
(2020), for each instance, we apply CONJECTURING with
three subsets of operators in turn: {+, � , × , ÷ , + 1,
�1, 2, ffi√

}; {+, � , × , ÷ , + 1, � 1, 2, ffi√ , sin, cos, ln,�1, e};
and {+,� , × ,÷ ,+ 1,� 1, 2, ffi√ , sin, cos, ln,�1, e, | · | , sin�1,
tan�1}. For instances where an equation includes the con
stant π, we include π as a constant invariant. For each
instance, we use the first 10 samples in each data set and
run CONJECTURING for 7,200seconds, which is the same

time limit used for AI FEYNMAN and EUREQA reported in
Udrescu and Tegmark (2020). We also run CONJECTURING

for the noise tolerance of and time required by AI FEYN

MAN to recover the equations as reported in table 4 of
Udrescu and Tegmark (2020).

Table 2 and Table A.1 in the appendix contain the
results of applying CONJECTURING to the data sets.
CONJECTURING produces bounds that match the equation
for five of the 10 instances. CONJECTURING finds a match
for all equations with complexity 10 or less, matches one
equation with complexity 11, and is unable to find a
match for equations with higher complexity. Udrescu
and Tegmark (2020) report that AI FEYNMAN resolves all
of the equations, whereas EUREQA (Schmidt and Lipson
2009) resolves four of the 10 equations, two of which are
different from those found by CONJECTURING. These
results indicate that CONJECTURING is well suited for re
covering equations of complexity 10 or less within
7,200 seconds. Higher-complexity formulas with more
invariants require additional time.

Figure 4. The Number of Conjectures Produced, Expressions Tested, and Valid Expressions Produced as a Function of the
Number of Noise Invariants Added to the Gravity Experiment

Conjectures Expressions Evaluated Valid Expressions

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

0e+00

5e+04

1e+05

0e+00

5e+05

1e+06

0

50

100

150

Number of Noise Invariants

Bound Upper Lower

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
12 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Equations I.6.2 and I.6.2.b in Table 2 each have a
repeated invariant σ. As noted in Section 2.2, CONJECTUR
ING does not allow repeated invariants, and so, these
equations will not be recoverable as bounds. In Section
5.4, we describe ways to address this deficiency and
recover equations such as I.6.2 and I.6.2.b.

The normalized root mean square error (NRMSE) cal
culated for 100 test examples for the best-performing
conjecture on the training data based on mean absolute
error. NRMSE is calculated as 1=σf multiplied by the
root mean square error on the test examples, where σf is
the standard deviation of the invariant of interest for the
test examples. CONJECTURING produced conjectures with
NRMSE less than 1.0 for eight of the 10 equations.
Udrescu and Tegmark (2020) report exact recovery of all
of the equations by AI FEYNMAN, so the NRMSE is zero.

Despite the fact that CONJECTURING is not designed for
recovery of equations, we see that it can be successful in
doing so for lower-complexity nonlinear equations.

Table A.1 in the appendix contains the results of
applying CONJECTURING to the data sets when noise is
added to the invariant of interest. The noise added to the
invariant of interest is sampled from a normal distribu
tion with mean zero and standard deviation equal to the
number in the table multiplied by the root mean square
of the invariant of interest in the training data. The noise
is the noise level tolerated by AI FEYNMAN as reported by
Udrescu and Tegmark (2020). The time is the time
reported by Udrescu and Tegmark (2020) for AI FEYNMAN
to recover the equation.

CONJECTURING is unable to achieve exact recovery of the
equations with the introduction of noise. The NRMSE is
less than 1.0 for six of the 10 equations and does not
exceed 1.625. Noise that results in target values above or
below the ground truth will violate exact upper or lower
bounds that could be produced by the Dalmatian heuris
tic. Even so, CONJECTURING is able to produce good
approximations of the equations.

Table 1. Sufficient Conditions Produced by CONJECTURING for Different Training Set Samples for the
Real Estate Valuation Data

Sample Conjectures produced

1 bathrooms ≥�300K=pricePerSquareFoot+ squareFootage→ below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1)) → above

2 squareFootage ≤ ⌈300K=pricePerSquareFoot⌉ → below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1) → above

3 bathrooms ≥�300K=pricePerSquareFoot+ squareFootage→ below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1)) → above

4 bathrooms ≥�300K=pricePerSquareFoot+ squareFootage→ below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1)) → above

5 bathrooms ≥�300K=pricePerSquareFoot+ squareFootage→ below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1)) → above

6 squareFootage ≤ ⌈300K=pricePerSquareFoot⌉ → below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1) → above

7 squareFootage ≤ (300K+ longitude)=pricePerSquareFoot→ below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1)) → above

8 bathrooms ≥�300K=pricePerSquareFoot+ squareFootage→ below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1)) → above

9 squareFootage ≤ (300K� daysOnMarket)=pricePerSquareFoot→ below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1) → above

10 bathrooms ≥�300K=pricePerSquareFoot+ squareFootage→ below
squareFootage ≥ (300K+ 1)=(pricePerSquareFoot� 1)) → above

Table 2. Results for CONJECTURING on Data Sets from Udrescu and Tegmark (2020)

Instance Equation Number of invariants Complexity NRMSE Recovered by EUREQA?

I.6.2.a f � e�θ2=2=
ffiffiffiffiffiffi
2π
√

2 9 0.000 No
I.6.2 f � e�θ2=2σ2

=
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2
√

3 13 0.553 No
I.6.2.b f � e�(θ�θ1)

2
=2σ2

=
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2
√

5 16 1.511 No

I.8.14 d �
ffi

(x2 � x1)
2
+ (y2 � y1)

2
q

4 10 0.000 No
I.9.18 Gm1m2

(x2�x1)
2
+(y2�y1)

2
+(z2�z1)

2 9 17 1.211 No

I.10.7 m � m0ffiffiffiffiffiffiffi
1�v2

c2

q 3 9 0.000 No

I.11.19 A � x1y1 + x2y2 + x3y3 6 11 0.696 Yes
I.12.1 F � µNn 2 3 0.000 Yes
I.12.2 F � q1q2

4πɛr2 5 12 0.671 Yes
I.12.4 Ef �

q1
4πɛr2 4 11 0.000 Yes

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 13

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

5.3.2. Performance of AI Feynman (Udrescu and Teg
mark 2020) on Gravity and Real Estate Examples. We
apply the implementation of AI FEYNMAN available5 to
the gravity example described in Section 3.1 and the real
estate example described in Section 3.2. A difference
between our gravity example and the data sets used by
Udrescu and Tegmark (2020) is that for the gravity exam
ple, the gravitational constant is the same for every data
point, but for the data sets used by Udrescu and Teg
mark (2020), it is treated as a variable and is different for
each point.

For the real estate data, we apply AI FEYNMAN to the
data to attempt to discover the relationship between
the property of interest and the input features. The
original numeric features are supplied along with Bool
ean features corresponding to the levels of the property
Type feature. Note that AI FEYNMAN is designed for
recovering numeric functions and is therefore not suit
able for Boolean relationships such as those in the real
estate example.

For both instances, the AI FEYNMAN implementation
aborts with an error regarding an eigenvalue calculation.
We suspect that the source of the failure in both cases
may be because of the difference in treatment of con
stants. In our gravity example, the gravitational constant
is the same for all points, whereas in analogous exam
ples, Udrescu and Tegmark (2020) treat constants as vari
ables and generate a unique value for each observation.
Our practice of treating the gravitational constant as the
same for all observations may be contributing to an error
in matrix calculations for AI FEYNMAN. In the real estate
example, each observation has a feature with the same
value (the $300,000 cutoff). This constant column in the
data matrix could also be contributing to an error in
matrix calculations for AI FEYNMAN. In the electronic com
panion, we include the code and output for AI FEYNMAN

applied to (1) their example 1, demonstrating that our
installation is functional, (2) our gravity example, includ
ing the error message, and (3) our real estate example,

including the error message. These examples show that
the CONJECTURING framework can provide useful insights
on examples where AI FEYNMAN cannot.

5.4. Experiments with the Nguyen Benchmark
Suite (Nguyen et al. 2011)

We apply our invariant conjecturing implementation to
the Nguyen benchmark suite (Nguyen et al. 2011) so as
to draw comparisons with symbolic regression methods
described by Petersen et al. (2021). The Nguyen bench
mark suite is a set of 12 equations. As mentioned before,
our CONJECTURING framework is designed for discovering
nonlinear relationships in the form of bounds and Bool
ean relationships, whereas symbolic regression methods
are designed to recover equations. In these experiments,
we investigate the ability of invariant conjecturing to
recover equations (or approximations) among the dis
covered bounds.

The benchmark equations are in Table 3. We generate
an instance for each using the protocols described by
Petersen et al. (2021). For each equation, 20 training
examples and 20 test examples are generated. For Equa
tions (1) though (6), x is sampled from a Uniform(�1,1)
distribution; for Equation (7), x is sampled from a Uni
form(0,2) distribution; for Equation (8), x is sampled
from a Uniform(0,4) distribution; and for Equations (9)
through (12), x and y are sampled from a Uniform(0,1)
distribution. For each equation, we allow a time limit of
10,000 seconds for generating upper and lower bounds.
The operators include unary operators sine, cosine, natu
ral log, and natural exponential and binary operators
addition, subtraction, multiplication, and division.

As noted in Section 2.2, our CONJECTURING framework
does not allow repeated invariants in conjectures. There
fore, most of the equations in Table 3 cannot be recov
ered by our framework. For each equation, we first
evaluate the ability of the conjectured bounds to approxi
mate the equation by reporting the normalized root
mean squared error as defined and reported by Petersen

Table 3. Results for CONJECTURING in the Nguyen Benchmark Suite (Nguyen et al. 2011)

Instance Equation

Without additional invariants With additional invariants

Recovered? NRMSE Recovered? NRMSE

1 f � x3 + x2 + x No 0.94 Yes 0.00
2 f � x4 + x3 + x2 + x No 0.86 Yes 0.00
3 f � x5 + x4 + x3 + x2 + x No 1.01 Yes 0.00
4 f � x6 + x5 + x4 + x3 + x2 + x No 0.63 Yes 0.00
5 f � sin(x2) cos(x)� 1 No 0.22 Yes 0.00
6 f � sin(x) + sin(x+ x2) No 0.44 Yes 0.00
7 f � log(x+ 1) + log(x2 + 1) No 0.58 Yes 0.00
8 f �

ffiffiffi
x
√

No 1.08 Yes 0.00
9 f � sin(x) + sin(y2) No 1.03 Yes 0.00
10 f � 2 sin(x) cos(y) No 0.60 Yes 0.00
11 f � xy Yes 0.00 Yes 0.00
12 f � x4 � x3 + 1

2 y2 � y No 0.83 Yes 0.00

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
14 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

et al. (2021) and described in Section 5.3. We report
NRMSE for the conjecture with the lowest mean average
error for the training examples.

The results in Table 3 indicate that our CONJECTURING

framework is able to recover only Equation (11), f � xy. It
is able to do so despite the fact that the exponent opera
tor is not included. CONJECTURING produces the expression
ey log(x) and simplified it to xy. The NRMSE values for the
best bounds for the other instances range from 0.22 to
1.08. These values are larger than those reported for sym
bolic regression methods as reported in table 10 of Peter
sen et al. (2021); the methods include deep symbolic
regression (Petersen et al. 2021), priority queue training
(Abolafia et al. 2018), vanilla policy gradient (VPG)
(Petersen et al. 2021), genetic programming, and a
method implemented in Mathematica based on Markov
chain Monte Carlo and nonlinear regression.

For Expressions (1) through (8), the only invariants are
the invariant of interest f and the input invariant x.
Because of the fact that no invariants can be repeated, the
CONJECTURING framework is limited to the application of
only unary operators to x, and no expressions with
binary operators are produced. As an example, for the
first equation, the best-conjectured lower bound is

f (x) ≥ sin(eecos(sin(sin(sin(sin(log(sin(sin(cos(cos(sin(ex)))))))))))
):

We now describe how our CONJECTURING framework can
be adapted to allow for repeated invariants and report
results for the adapted method. To address repeated
invariants, we can add additional invariants using com
monly occurring functional forms. For Equations (1)
through (8), we add invariants x2, x3, x4, x5, x6, and
sin(x), cos(x),

ffiffiffi
x
√

along with two copies of constant 1
and constant 2. Two copies of constant 1 are included
because it appears twice in Equation (7). For Equations
(9) through (12), we also add y2 as an invariant. Recall
that in our implementation, whereas invariants cannot
repeat in a conjecture, operators can. Therefore, an alter
native approach to addressing the constants is to include
the unary operator of addition by one.

As shown in Table 3, the CONJECTURING framework is
able to exactly recover each equation as a bound when
the additional invariants are included so that the NRMSE
values are 0.000 for all equations.

The practice of adding the invariants that are non
linear functions of the original input might appear to be
impractical. However, as suggested by Brunton et al.
(2016), specifying these invariants can reflect expert
knowledge on the system being investigated. They note
that identifying candidate functions for SINDy “must be
a coordinated effort to incorporate expert knowledge,
feature extraction, and other advanced methods.”
CONJECTURING offers distinct capabilities for discovery, as
nonlinear functions can be specified as invariants or may

still be discovered so long as they do not involve
repeated input invariants.

6. Application to COVID-19 Data
In this section, we demonstrate the CONJECTURING frame
work on synthetic patient-level COVID-19 data that
were provided as part of the Veterans Health Adminis
tration (VHA) Innovation Ecosystem and precisionFDA
COVID-19 Risk Factor Modeling Challenge.6 The data
include synthetic veteran patient health records, includ
ing medical encounters, conditions, medications, and
procedures. All subjects are located in Massachusetts.

The goal of the challenge was to better understand
risk and protective factors for COVID-19 outcomes. Par
ticipants were asked to predict alive/deceased status. In
our experiments, we focused on investigating outcomes
for subjects who had COVID-19. Because our goal is to
discover potential risk and protective factors, we evalu
ate the performance of CONJECTURING by checking the per
formance of the feature relationships on holdout test
data rather than on prediction accuracy. Establishing the
risk and protective factors as causal would require addi
tional controlled experiments.

The purpose of this demonstration is to show that the
CONJECTURING framework can suggest patterns in data
that are potentially valuable and useful. We demonstrate
that the patterns discovered are validated by the medical
literature and, further, that they suggest functional forms
for the relationships among invariants.

Predictions were based on information obtained
through December 31, 2019. In the training data, we
drop all information pertaining to events on or after Jan
uary 1, 2020, and drop subjects who died before January
1, 2020. The prediction horizon is January 1, 2020,
through May 31, 2020, and there are 5,568 patients with
deceased status.

Table B.1 in the appendix includes definitions of new
features that we generated for each patient. For each
numeric observation, we created invariants for the mean
and most recent value. For each reported allergy, device,
immunization, procedure, and discretely measured ob
servation, we create a property corresponding to each
level. In total, we use 309 invariants and 362 properties.
We use a training set consisting of 100 subjects from each
outcome class (deceased/alive). We compare the results
of applying CONJECTURING with classification and regres
sion trees (CART) (Breiman et al. 1984), which is another
interpretable method.

6.1. Results for CONJECTURING
Upper and lower bounds are generated for each invari
ant and for each outcome. These bounds, along with the
362 properties in the data, are used as properties for
CONJECTURING-PROP. Conjectures are generated for both
outcomes. The parameter skips is set to 90%. We use the

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 15

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

remaining 73,497 subjects as a test data set, thereby
allowing us to ascertain the effects of potential overfitting
to the 200 subjects used for training.

Among those with COVID-19 in the test data, 5,468
(8.0%) have a status of deceased, and 68,029 (92.0%) are
alive. There are 38 conjectures for sufficient conditions
for alive status and 40 conjectures for sufficient condi
tions for deceased status produced by the framework.
Tables C.1–C.4 in the appendix contain the conjectures
and evaluations.

Tables C.2 and C.4 in the appendix contain quantita
tive evaluations of the performance of the conjectures.
Each table contains the precision, support, and lift of
each conjecture. Note that each conjecture is a sufficient
condition expressed as a conditional statement. The pre
cision is the percentage of test examples for which the
conditional statement evaluates to true among those for
which the antecedent is true. Precision may be thought
of as the “hit rate” of the conjecture. The support is the
number of test examples for which the antecedent evalu
ates to true. The lift is the ratio of the precision to the pro
portion of examples for which the consequent is true. If
the lift is greater than one, then the conjecture is better at
identifying people for which the consequent is true than
a random selection from the population.

Of the 38 conjectures for alive status, 22 (57.9%) have
lift of at least 1.00. The lift ranges from 0.81 to 1.07; note
that the maximum possible lift for a conjecture for alive
status is 1.08 (1/(68,029/73,497)). Of the 40 conjectures
for deceased status, 34 (85%) have lift at least 1.00. The
lift ranges from 0.17 to 4.15.

Consider the sufficient conditions for deceased status
in Table C.3 in the appendix. The conjecture with the
highest precision and lift is

longitude > �age × medicationsLifetimePercCovered
→ Deceased,

and it has a lift of 4.15, meaning that a subject for which
longitude >�age ×medicationsLifetimePercCovered is 4.15
times as likely to die as a randomly selected subject. The
conjecture indicates that subjects in the east who are
older and have a larger percentage of medications cov
ered by the payer are at higher risk of death. The pres
ence of longitude in the conjecture could be an indication
of higher risk in population centers in the east such as
Boston, or it could just serve the purpose of a number so
that the relationship of the other invariants is satisfied.
The range for longitude is (�73:49, � 69:92). We conduct
a follow up t-test for a difference in mean longitude
by outcome, and the null hypothesis is not rejected
(p�0.42), suggesting that longitude is serving as a toler
ance factor. The percentage of medications covered by
the VHA is higher for subjects with more preexisting
conditions and for those with more expensive medica
tions because there is a low copay annual cap (currently

$700).7 Further, the conjecture produces a suggestion of a
functional form for the relationship between these fac
tors. The conjecture confirms the CDC guidance that
older subjects and those with more preexisting condi
tions are a higher risk of death from COVID.8

The conjecture with the second-highest precision and
lift is

medicationsActive > ⌊hemoglobinA1cHemoglobinTotalInBlood⌋

→ Deceased,

with a lift of 3.29. The condition includes the number of
active medications and the ratio of hemoglobin A1c to
total hemoglobin (an HbA1c test). The conjecture indi
cates that those with more active medications than the
HbA1c percentage are at higher risk of death, which
again agrees with the CDC guidance concerning preexist
ing conditions. Values for HbA1c are typically between
5.7% and 10.0%.9 It could be that the HbA1c is serving as
a constant so that when the conjecture is true for a patient,
then that patient will have at least five active medications,
indicating an increased number of additional conditions.

The conjecture with the third-highest precision and lift
is

age > carbonDioxide × ⌊potassium⌋ → Deceased,

with a lift of 3.12. The conjecture suggests that older sub
jects with lower CO2 levels and lower potassium are at
higher risk of death. Lower CO2 levels and abnormal
potassium levels, particularly lower levels, have been
independently studied and associated with COVID-19
morbidity and mortality (Hu et al. 2021, Noori et al.
2022). In addition to validating a role for these invariants,
the conjecture suggests a potential nonlinear relationship
among them.

For both outcomes, the CONJECTURING framework is
able to generate new sufficient conditions that are true
for the respective outcome at higher rates than would be
expected for a patient selected at random. These results
indicate that the conjecturing process is capturing rela
tionships that hold across the population and are not
merely reflective of the 200 training samples. In other
words, overtraining appears to be mitigated. The discov
ered relationships, and the direct and indirect relation
ships that they indicate among features, are validated by
CDC guidance and provide suggestions for deeper in
vestigations into the functional form of the relationships
and the extent of causality. The number of conjectures
generated is not overwhelming for a human investigator
to consider and further investigate.

6.2. Comparison with an Interpretable Model
We now consider the results of applying classification
and regression trees (Breiman et al. 1984) to the COVID-
19 data. A model is fit using the implementation in the R

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
16 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

library rpart (Therneau and Atkinson 2019). The tree pro
duced by rpart is depicted in Figure 5.

Each leaf node corresponds to a sufficient condition
for deceased status (True) or alive status (False). There
are three sufficient conditions for alive status and two
sufficient conditions for deceased status. Tables 4 and 5
contain the conditions and quantitative evaluations of
the conditions produced by CART.

When comparing the results with those of CONJECTUR

ING in Tables C.1–C.4 in the appendix, we note that
CART produces conditions that are in conjunctive nor
mal form where each clause consists of a single numeric
bound, whereas CONJECTURING tends to leverage non
linear relationships among invariants as the basis for
conditions. In addition, we observe that CART (using the
default control parameters):

1. produces many fewer conditions (3 versus 38 for
alive status, 2 versus 40 for deceased status),

2. produces two conditions with much larger sup
port in the test data than those produced by CONJECTUR

ING (node 4 has 36,531, and node 7 has 12,443),
3. produces only two conditions that have lift

greater than 1.0 (node 4 has lift 1.06, and node 7 has lift
2.85), and

4. does not produce conditions with better precision
or lift than the best conditions produced by CONJECTURING.

We note that by using additional training data and
adjusting the parameters for building the tree, we can
obtain additional conditions that may produce condi
tions with higher precision and lift.

Both CART and CONJECTURING are able to leverage cate
gorical variables for conditions, though CART does not
do so for this training set. An example of such a condi
tion is conjecture 27 in Table C.3 in the appendix.

Similar to many decision tree frameworks, CART
leverages univariate bounds as component properties in
its invariant clauses. CONJECTURING is unlikely to derive
numeric bounds for individual features but instead pro
duces more nonlinear relationships between invariants.
Decision tree frameworks such as CART and CONJECTUR

ING are complementary approaches for discovery of pat
terns among numeric and categorical features, but we
see that CONJECTURING is capable of producing more com
plex yet interpretable relationships.

We did not compare CONJECTURING with association
rule methods. Association rule methods for numerical
data create bins using cutoff values in a manner similar
to CART. Association rule methods might produce
better-performing patterns but are unable to recover
nonlinear relationships.

7. Conclusions
This work demonstrates that automated search for con
jectured feature relations can support learning from
data. The discovery of these kinds of feature relation
ships can also initiate new collaboration with domain
scientists and lead to new scientific knowledge.

Our CONJECTURING framework is able to recover the
functional form for gravity with only the measured force,
masses, and distance. The framework is able to recover

Figure 5. (Color online) Tree Produced by CART for Predicting Alive/Deceased Status for COVID-19 Patients

Note. For each node, if the condition is satisfied, then the upper branch is taken.

Table 4. Conditions from CART for Alive/Deceased Status Among Those with COVID

Node number Sufficient condition

4 age < 66.48 and activeCarePlanLength < 33:30→ Alive
6 age ≥ 66:48 and meanPotassium ≥ 4:85→ Alive
10 age < 66.48 and activeCarePlanLength ≥ 33:30 and bodyHeight ≥ 167:15→ Alive
7 age ≥ 66:48 and meanPotassium < 4:85→Deceased
11 age < 66.48 and activeCarePlanLength ≥ 33:30 and bodyHeight < 167:15→Deceased

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 17

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

the functional form for gravity when up to six additional
noise features are added.

The framework also recovers an interaction between
price per square foot, square footage, and price in real
estate data. The interaction is recovered for each of 10
random samples of 1,000 training samples.

Using synthetic patient-level COVID-19 data, the
framework produces conjectures that confirm CDC guid
ance and suggest new relationships regarding risk factors.

CONJECTURING provides a complementary functionality
when compared with tree-based models. We demon
strate that CONJECTURING is able to produce conditions
that involve nonlinear relationships among invariants,
whereas CART produces conditions that are based on
conjunctions of numeric bounds for individual invar
iants. Association rule methods that accommodate
numerical data find rules based on ranges of individual
invariants and would also fail to produce conditions
that suggest nonlinear functional relationships among
invariants.

In additional experiments, we observe that CONJECTUR

ING can be adapted for other tasks such as symbolic
regression. CONJECTURING is able to recover ground truth
equations as bounds in some situations, but time limita
tions prevent recovery of more complex relationships. In
our current implementation, repeated invariants cannot
be produced. We demonstrate that a workaround is to
add invariants for commonly occurring functional forms.

Even though CONJECTURING can be adapted for other
tasks such as symbolic regression, it provides a funda
mentally new functionality in terms of discovering pat
terns in data that symbolic regression methods, tree-based
models, and association rule methods cannot provide. To
the best of our knowledge, there is no other framework
for discovering nonlinear relationships among features in
the form of bounds and Boolean relationships involving
these bounds and categorical features.

There is a trade-off in the proposed framework
between the number of examples and the complexity of
recovered expressions. With fewer examples, more can
didate expressions can be checked in less time.

The current version of CONJECTURING requires that con
jectures are true for every example. Future research will
further investigate the ability of the framework to handle
noisy data and investigate adjustments to the algorithm to

better handle noisy data such as generating conjectures
that do not necessarily hold for all examples. If the han
dling of noise can be improved, then CONJECTURING may be
able to be adapted to support predictive modeling efforts.

As indicated by the motivating examples from graph
theory, it can be desirable to retain multiple bounds or
conditions produced by conjecturing because different
conjectures might be better descriptions of system behav
ior for certain examples and not others. In most of the
experiments reported here, we evaluated conjectures as
if they were each an entire model of the system and used
standard ways of evaluating them. Additional metrics
besides those considered in this work might also be
helpful in evaluating conjectures. An interesting and
important avenue of future research is how to better
evaluate the ability of groups of conjectures to model sys
tem behavior.

If the CONJECTURING framework can provide functional
relationships without constants of proportionality, the
constant can be determined using regression with the
original data. Suppose that the CONJECTURING framework
indicates a relationship between the response y and pre
dictors x of the form y ≤ b1 f (x) for an unknown constant
b1. A regression model can be fit of the form ŷ �
b0 + b1 f (x) using the data (xi, yi), i � 1, : : : , n. The best
strategy for determining constants of proportionality is
another avenue for future research. Constants can pro
vide unit consistency to conjectures. A method to search
for unit consistent constants could facilitate the selection
of meaningful conjectures.

Another area for potential research involves the
so-called p >> n problem. That is, if the number of fea
tures is larger than the number of observations, then
there are insufficient degrees of freedom to estimate a
linear model with all p features or any more complex
model. In such situations, feature and/or model selec
tion tools are needed to search over potentially large
model spaces. As desired model complexity increases
(e.g., consideration of interaction terms), searching over
such large model spaces can become computationally
prohibitive. For instance, suppose an investigator seeks
to identify a model by selecting the “best” subset from
among 10 features and their associated 45 two-way inter
actions. In this example, simply considering models with
only 10 variables requires searching over a model space
larger than 2.9 billion. Future research will investigate
the ability of the CONJECTURING framework to simplify
model spaces and hence provide a mechanism for a
more expeditious search of plausible models.

Acknowledgments
High-performance computing resources provided by the
High Performance Research Computing (HPRC) Core Facility
at Virginia Commonwealth University (https://chipc.vcu.edu)
were used for conducting the research reported in this work.

Table 5. Evaluation of Conditions from CART Among
Those with COVID

Node number Consequence Precision (%) Support Lift

4 Alive 98.28 36,531 1.06
6 Alive 81.69 2,070 0.88
10 Alive 91.57 5,371 0.99
7 Deceased 21.17 12,443 2.85
11 Deceased 5.37 3,746 0.72

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
18 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://chipc.vcu.edu

Appendix A. Additional Results for CONJECTURING
for Recovery of Equations

Appendix B. Features Generated for COVID-19 Data

Table A.1. Additional Results for CONJECTURING on Data Sets from Udrescu and Tegmark (2020)

Instance Equation Number of invariants Complexity Noise Time (s) NRMSE

I.6.2.a f � e�θ2=2=
ffiffiffiffiffiffi
2π
√

2 9 10�2 16 0.154
I.6.2 f � e�θ2=2σ2

=
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2
√

3 13 10�4 2,992 0.614
I.6.2.b f � e�(θ�θ1)

2
=2σ2

=
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2
√

5 16 10�4 4,792 1.188
I.8.14 d �

ffi

(x2 � x1)
2
+ (y2 � y1)

2
q

4 10 10�4 544 1.323
I.9.18 Gm1m2

(x2�x1)
2
+(y2�y1)

2
+(z2�z1)

2 9 17 10�5 5,975 1.252
I.10.7 m � m0ffiffiffiffiffiffiffi

1�v2
c2

q 3 9 10�4 14 0.034

I.11.19 A � x1y1 + x2y2 + x3y3 6 11 10�3 184 0.633
I.12.1 F � µNn 2 3 10�3 12 0.002
I.12.2 F � q1q2

4πɛr2 5 12 10�2 17 0.885
I.12.4 Ef �

q1
4πɛr2 4 11 10�2 12 0.525

Table B.1. Feature Definitions for COVID-19 Data

Feature name Definition

healthcareExpenses The total lifetime cost of healthcare to the patient
healthcareCoverage The total lifetime cost of healthcare services that were covered by payers
latitude Latitude of patient’s home address
longitude Longitude of patient’s home address
age Current age of patient
numAllergies Number of ongoing patient allergies
activeCarePlans Number of current care plans
lifetimeCarePlans Number of lifetime care plans
activeCarePlanLength Length of time under current care plans
lifetimeCarePlanLength Total lifetime length under care plans
activeConditions Number of current health conditions
lifetimeConditions Number of lifetime health conditions
activeConditionLength Amount of time since current health condition(s) diagnosis
lifetimeConditionLength Amount of time since first diagnosis of a health condition
deviceLifetimeLength Total length of time using a medical device (e.g., pacemaker)
encountersCount Total number of encounters with a healthcare professional
encountersLifetimeTotalCost Total lifetime cost of healthcare encounters
encountersLifetimeBaseCost Total lifetime cost of healthcare encounters, not including any line item costs related to

medications, immunizations, procedures, or other services
encountersLifetimePayerCoverage Total lifetime cost of healthcare encounters that were covered by payers
encountersLifetimePercCovered Percentage of lifetime cost of healthcare encounters that were covered by payer
imagingStudiesLifetime Number of lifetime imaging diagnostics (e.g., MRI) performed on patient
immunizationsLifetime Number of lifetime immunizations received by patient
immunizationsLifetimeCost Total lifetime cost of all immunizations received by patient
medicationsLifetime Number of lifetime medications prescribed
medicationsLifetimeCost Total lifetime cost of medications
medicationsLifetimePercCovered Percentage of lifetime medication cost coverered by payer
medicationsLifetimeLength Total lifetime length on prescribed medications
medicationsLifetimeDispenses Total lifetime number of prescription dispenses
medicationsActive Number of current prescriptions
proceduresLifetime Number of lifetime medical procedures (e.g., surgery) performed on patient
proceduresLifetimeCost Total lifetime cost of all medical procedures performed on patient

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 19

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Appendix C. Results for CONJECTURING Applied to
COVID Data

Table C.1. Conjectures for Alive Status Among Those with COVID

Conjecture

1 activeConditionLength > age2/latitude →Alive
2 medicationsLifetime < �immunizationsLifetimeCost + 2 × proceduresLifetime →Alive
3 medicationsActive <min{sodium, ⌊QOLS⌋} →Alive
4 activeCarePlans < emedicationsLifetimePercCovered � immunizationsLifetime→ Alive
5 activeCarePlanLength < 10encountersLifetimePercCovered × activeCarePlans→Alive
6 lifetimeConditionLength >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QALY
√ activeConditions

→Alive
7 lifetimeCarePlans > encountersCount=2→ Alive
8 lifetimeCarePlans >min{triglycerides, ⌊lifetimeConditions⌋}→Alive
9 encountersCount > activeConditions+medicationsLifetimeCost+ 1→Alive
10 diabetes and latitude <

ffi
totalCholesterol
√

+meanCarbonDioxide→ Alive
11 activeCarePlans >medicationsLifetimemedicationsLifetimeCost→Alive
12 lifetimeCarePlans >

ffi
enountersCount
√

+QOLS→ Alive
13 age < lifetimeConditions × log(latitude) →Alive
14 anemiaDisorder and activeConditionLength <min{ureaNitrogen, |activeCarePlanLength | } →Alive
15 lifetimeCarePlans >max{DALY, ⌊potassium⌋}→ Alive
16 healthcareCoverage > ⌊DALY⌋ × lifetimeCarePlanLength→ Alive
17 lifetimeConditionLength > (encountersLifetimeTotalCost� 1)=proceduresLifetime→ Alive
18 healthcareCoverage > lifetimeConditionLength2=imagingStudiesLifetime→ Alive
19 immunizationsLifetimeCost > (bodyHeight� 1)immunizationsLifetime

→ Alive
20 numAllergies < activeCarePlanLength� age+ 1→ Alive
21 activeCarePlans < ⌊microalbuminCreatineRatio⌋� proceduresLifetimeCost→ Alive
22 latitude <

ffi
encountersLifetimeTotalCost

p
�medicationsLifetime→ Alive

23 bodyMassIndex40 →Alive
24 activeCarePlanLength > age+ proceduresLifetime� 1→ Alive
25 medicationsLifetimeLength < 2 × activeCarePlan × deviceLifetimeLength→ Alive
26 carbonDioxide > respiratoryRate × ⌊hemoglobinA1cHemoglobinTotalInBlood⌋ →Alive
27 osteoporosisDisorder and lifetimeCarePlanLength <min{painSeverity, 2 × activeCarePlanLength}→ Alive
28 healthcareCoverage <

ffi
encountersLifetimePayerCoverage

p
×medicationsLifetime→ Alive

29 respiratoryRate < painSeverity+ ⌈leukocytesVolumeInBlood⌉ →Alive
30 meanPainSeverity >max{proceduresLifetime, ⌊hemoglobinA1cHemoglobinTotalInBlood⌋}→ Alive
31 prediabetes and meanDiastolicBloodPressure > ⌊carbonDioxide⌋ +meanHeartRate→Alive
32 latitude < encountersCount × ⌊QOLS⌋ →Alive
33 painSeverity < ⌊meanPainSeverity⌋� 1→ Alive
34 lifetimeCarePlans >max{DALY, ⌊potassium⌋}→ Alive
35 latitude < 2 ×DALY × encountersLifetimePercCovered→ Alive
36 activeCarePlanLength >max{sodium, ⌈hematocritVolume⌉}→ Alive
37 medicationsLifetimePercCovered > latitude2=medicationsLifetimeDispense→ Alive
38 healthcareCoverage > healthcareExpenses

2×encountersLifetimePercCovered→ Alive

Table C.2. Evaluation of Conjectures for Alive Status Among Those with
COVID

Conjecture Precision (%) Support Lift

1 99.11 3,042 1.07
2 98.54 3,700 1.06
3 98.51 9,480 1.06
4 98.25 8,231 1.06
5 98.23 6,103 1.06

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
20 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Table C.2. (Continued)

Conjecture Precision (%) Support Lift

6 98.05 7,937 1.06
7 97.79 4,161 1.06
8 97.65 5,453 1.05
9 97.65 2,939 1.05
10 97.41 1,969 1.05
11 97.07 4,774 1.05
12 96.79 2,242 1.05
13 96.61 1,650 1.04
14 95.65 2,045 1.03
15 95.39 6,311 1.03
16 95.31 1,236 1.03
17 95.20 1,687 1.03
18 95.07 4,017 1.03
19 94.32 440 1.02
20 94.00 500 1.02
21 93.59 1,498 1.01
22 93.25 1,185 1.01
23 92.09 834 0.99
24 91.01 1,213 0.98
25 90.79 999 0.98
26 89.77 831 0.97
27 89.41 727 0.97
28 88.61 2,389 0.96
29 88.27 358 0.95
30 88.21 704 0.95
31 87.67 1,890 0.95
32 87.20 2,250 0.94
33 87.14 583 0.94
34 85.79 1,612 0.93
35 84.50 755 0.91
36 82.76 586 0.89
37 76.22 677 0.82
38 74.75 99 0.81

Table C.3. Conjectures for Deceased Status Among Those with COVID

Conjecture Sufficient condition

1 longitude >�age ×medicationsLifetimePercCovered→Deceased
2 medicationsActive (HTML translation failed)
3 age > carbonDioxide × ⌊potassium⌋ →Deceased
4 deviceLifetimeLength ≤ 2 × creatininehealthcareExpenses→Deceased
5 implantableCardiacPacem →Deceased
6 latitude < log(age)=log(10)activeCarePlans

→Deceased
7 medicationsActive > ⌈log(alkalinePhosphataseEnzymaticActivity)=log(10)⌉ →Deceased
8 immunizationsLifetimeCost < age × immunizationsLifetime2→Deceased
9 colonoscopy and coronaryHeartDisease →Deceased
10 activeCarePlans <min{deviceLifetimeLength, medicationsActive}→Deceased
11 glucose > ⌈creatinine ×meanGlucose→Deceased
12 bodyWeight > ⌊meanBodyWeight⌋ + 1→Deceased
13 healthcareExpenses < deviceLifetimeLength2 × lifetimeConditionLength→Deceased
14 lifetimeConditions > activeCarePlans+ ⌊ureaNitrogen⌋ →Deceased
15 activeCarePlans > ⌊log(triglycerides)⌋ →Deceased
16 healthcareExpenses < lifetimeConditionLength2 + encountersLifetimeTotalCost→Deceased
17 overlappingMalignantNeo →Deceased
18 latitude > ureaNitrogen⌈albuminMassVolumeInSerumOrPlasma⌉ →Deceased
19 activeConditionLength > erythrocytesVolumeInBlood × ⌈hemoglobinMassVolumeInBlood⌉ →Deceased

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 21

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Table C.3. (Continued)

Conjecture Sufficient condition

20 chronicObstructiveBronc →Deceased
21 longitude >

ffi
healthcareCoverage

p
� encountersCount→Deceased

22 age > 10medicationsActive � longitude→Deceased
23 chloride < ⌊meanChloride⌋� lifetimeCarePlans→Deceased
24 medicationsActive >max{respiratoryRate, log(latitude)}→Deceased
25 localizedPrimaryOsteoa →Deceased
26 rheumatoidArthritis →Deceased
27 chronicPain and smokesTobaccoDaily →Deceased
28 latitude < ⌊erythrocyteDistributionWidth⌋�meanPainSeverity→Deceased
29 activeCarePlans > 10medicationsActive=imagingStudiesLifetime→Deceased
30 tubalPregnancy →Deceased
31 activeConditions <medicationsActive2 �medicationsLifetime→Deceased
32 alcoholism and majorDepressionDisorder →Deceased
33 creatinine < ⌈meanCreatinine⌉=lifetimeCarePlans→Deceased
34 healthcareCoverage < encoutnersLifetimePayerCoverage × log(latitude)=log(10) →Deceased
35 encountersCount <min{DALY, 10immunizationsLifetime} →Deceased
36 lifetimeCarePlanLength > age+ emedicationsLifetime→Deceased
37 healthcareCoverage < activeCondionLength2 � encountersLifetimeTotalCost→Deceased
38 age > 1=2 × healthcareExpenses=immunizationsLifetimeCost→Deceased
39 activeCarePlanLength > activeConditionLength × eDALY→Deceased
40 medicationsLifetime <

ffi
encountersLifetimePayerCoverage

p
� age→Deceased

Table C.4. Evaluation of Conjectures for Deceased Status
Among Those with COVID

Conjecture Precision (%) Support Lift

1 30.91 372 4.15
2 24.44 2,954 3.29
3 23.22 1,722 3.12
4 22.47 632 3.02
5 22.39 844 3.01
6 21.74 1,490 2.92
7 21.44 4,427 2.88
8 21.24 2,199 2.85
9 21.01 257 2.82
10 20.90 799 2.81
11 20.03 1,058 2.69
12 18.25 548 2.45
13 17.56 467 2.36
14 17.54 1,898 2.36
15 17.31 3,328 2.33
16 17.23 940 2.32
17 16.92 130 2.27
18 16.13 1,091 2.17
19 15.68 797 2.11
20 14.11 900 1.90
21 14.08 781 1.89
22 14.08 2,230 1.89
23 11.99 884 1.61
24 11.84 1,884 1.59
25 11.76 2,159 1.58
26 11.44 201 1.54
27 10.54 607 1.42

Table C.4. (Continued)

Conjecture Precision (%) Support Lift

28 10.27 1,724 1.38
29 9.39 213 1.26
30 8.85 2,147 1.19
31 8.22 4,150 1.10
32 7.79 1,129 1.05
33 7.77 2,408 1.04
34 7.73 634 1.04
35 5.20 3,209 0.70
36 3.89 4,602 0.52
37 3.85 467 0.52
38 2.65 339 0.36
39 2.29 3,188 0.31
40 1.30 1,001 0.17

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
22 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Endnotes
1 The independence number is the largest number of nodes in a graph,
no two of which are contained in an edge. The definition of indepen
dence number is not important for this example, only the fact that with
every graph is associated a number called the “independence number.”
2 A Hamiltonian graph is a graph with a spanning cycle (West
2001). The definition of Hamiltonian is not important for this exam
ple, only the fact that any graph either is or is not Hamiltonian.
3 See http://nvcleemp.github.io/conjecturing/.
4 See https://space.mit.edu/home/tegmark/aifeynman.html.
5 See https://github.com/SJ001/AI-Feynman.
6 See https://precision.fda.gov/challenges/11/view.
7 See https://www.va.gov/health-care/copay-rates/, accessed July
10, 2022.
8 See https://www.cdc.gov/coronavirus/2019-ncov/need-extra-
precautions/people-with-medical-conditions.html, accessed July
10, 2022.
9 See https://www.cdc.gov/diabetes/managing/managing-blood-
sugar/a1c.html, accessed July 10, 2022.

References
Abolafia D, Norouzi M, Shen J, Zhao R, Le Q (2018) Neural pro

gram synthesis with priority queue training. Preprint, submit
ted January 10, https://arxiv.org/abs/1801.03526.

Aghaei S, Gómez A, Vayanos P (2021) Strong optimal classification
trees. Preprint, submitted March 29, https://arxiv.org/abs/
2103.15965.

Bellomarini L, Benedetto D, Gottlob G, Sallinger E (2020) Vadalog:
A modern architecture for automated reasoning with large
knowledge graphs. Inform. Systems 105:101528.

Bertsimas D, Dunn J (2017) Optimal classification trees. Machine
Learning 106:1039–1082.

Blanquero R, Carrizosa E, Molero-Rı́o C, Romero Morales D (2021)
Optimal randomized classification trees. Comput. Oper. Res.
132:105281.

Bradford A, Day J, Hutchinson L, Larson CE, Mills M, Muncy D,
Kaperick B, Van Cleemput N (2020) Automated conjecturing II:
Chomp and intelligent game play. J. Artificial Intelligence Res.
68:447–461.

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification
and Regression Trees (Routledge, New York).

Brunton S, Proctor J, Kutz J (2016) Discovering governing equations
from data by sparse identification of nonlinear dynamical sys
tems. Proc. Natl. Acad. Sci. USA 113:3932–3937.

Chattopadhyay I, Lipson H (2014) Data smashing: Uncovering lurk
ing order in data. J. Royal Soc. Interface 11:20140826.

Chvátal V (1972) On Hamilton’s ideals. J. Combin. Theory Ser. B 12:
163–168.

Chvátal V, Erdös P (1972) A note on Hamiltonian circuits. Discrete
Math. 2(2):111–113.

Dash S, Günlük O, Wei D (2018) Boolean decision rules via column
generation. 32nd Conf. Neural Inform. Processing Systems (Neur
IPS-18) (Curran Associates, Red Hook, NY), 4660–4670.

Elton D (2020) Self-explaining AI as an alternative to interpretable
AI. Preprint, submitted February 12, https://arxiv.org/abs/
2002.05149.

Fajtlowicz S (1995) On conjectures of graffiti. Graph Theory, Combina
torics, and Algorithms, vol. 1 (Wiley, New York), 367–376.

Fürnkranz J, Kliegr T, Paulheim H (2020) On cognitive preferences
and the plausibility of rule-based models. Machine Learning
109:853–898.

Haemers W (1979) On some problems of Lovász concerning the shan
non capacity of a graph. IEEE Trans. Inform. Theory 25(2):231–232.

Hammer P, Bonates T (2006) Logical analysis of data—An overview:
From combinatorial optimization to medical applications. Ann.
Oper. Res. 148: 203–225.

Hu D, Li J, Gao R, Wang S, Li Q, Chen S, Huang J, et al. (2021)
Decreased CO2 levels as indicators of possible mechanical
ventilation-induced hyperventilation in COVID-19 patients: A
retrospective analysis. Frontiers Public Health 8:596168.

Jantzen B (2016) Dynamical kinds and their discovery. Preprint, sub
mitted December 15. https://arxiv.org/abs/1612.04933.

Kanter JM, Veeramachaneni K (2015) Deep feature synthesis:
Toward automating data science endeavors. 2015 IEEE Internat.
Conf. Data Sci. Advanced Analytics (Institute of Electrical and
Electronics Engineers, Piscataway, NJ).

Katz G, Shin ECR, Song D (2016) ExploreKit: Automatic feature gener
ation and selection. 16th IEEE Internat. Conf. Data Mining (Insti
tute of Electrical and Electronics Engineers, Piscataway, NJ).

Khurana U, Samulowitz H, Turaga D (2018) Feature engineering for
predictive modeling using reinforcement learning. 32nd AAAI
Conf. Artificial Intelligence (AAAI-18) (Association for the Ad
vancement of Artificial Intelligence, Palo Alto, CA).

Langely P, Simon HA, Bradshaw GL, Zytkow JM (1987) Scientific
Discovery: Computational Explorations of the Creative Process (MIT
Press, Cambridge, MA).

Langley P (2019) Scientific discovery, causal explanation, and pro
cess model induction. Mind Soc. 18:43–56.

Larson CE, Van Cleemput N (2016) Automated conjecturing I: Faj
tlowicz’s Dalmatian heuristic revisited. Artificial Intelligence 231:
17–38.

Larson CE, Van Cleemput N (2017) Automated conjecturing III:
Property-relations conjectures. Ann. Math. Artificial Intelligence
81(3):315–327.

Lemadjeng AC, Rober T, Akyuz MH, Birbil SI (2023) Rule generation
for classification: Scalability, interpretability, and fairness. Pre
print, submitted August 30, https://arxiv.org/abs/2104.10751v3.

Lovász L (1979) On the Shannon capacity of a graph. IEEE Transac
tions Information Theory 25(1):1–7.

Lu J, Lee DK, Kim T, Danks D (2019) Good explanation for algorith
mic transparency. Preprint, submitted November 11, https://
dx.doi.org/10.2139/ssrn.3503603.

Nguyen Q, Nguyen X, O’Neill M, McKay R, Galván-López E (2011)
Semantically-based crossover in genetic programming: Applica
tion to real-valued symbolic regression. Genetic Programming
Evolvable Machines 12:91–119.

Nicolau M, Agapitos A (2021) Choosing function sets with better
generalisation performance for symbolic regression models.
Genetic Programming Evolvable Machines 22:73–100.

Noori M, Nejadghaderi S, Sullman M, Carson-Chahhoud K, Kolahi
AA, Safiri S (2022) Epidemiology, prognosis and management
of potassium disorders in Covid-19. Rev. Medical Virology 32:
e2262.

Petersen B, Larma M, Mundhenk T, Santiago C, Kim S, Kim J (2021)
Deep symbolic regression: Recovering mathematical expres
sions from data via risk-seeking policy gradients. Proc. Internat.
Conf. Learning Representation (ICLR) (International Conference
on Learning Representations, Appleton, WI).

Rudin C (2019) Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead.
Nature Machine Intelligence 1:206–215.

Rudin C, Ertekin S (2018) Learning customized and optimized lists
of rules with mathematical programming. Math. Programming
Comput. 10:659–702.

Samek W, Müller KR (2019) Toward explainable artificial intelli
gence. Samek W, Montavon G, Vedaldi A, Hanson L, Müller
KR, eds. Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning (Springer Nature, Cham, Switzerland), 5–22.

Schmidt M, Lipson H (2009) Distilling free-form natural laws from
experimental data. Science 324(5923):81–85.

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 23

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://nvcleemp.github.io/conjecturing/
https://space.mit.edu/home/tegmark/aifeynman.html
https://github.com/SJ001/AI-Feynman
https://precision.fda.gov/challenges/11/view
https://www.va.gov/health-care/copay-rates/
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
https://www.cdc.gov/diabetes/managing/managing-blood-sugar/a1c.html
https://www.cdc.gov/diabetes/managing/managing-blood-sugar/a1c.html
https://arxiv.org/abs/1801.03526
https://arxiv.org/abs/2103.15965
https://arxiv.org/abs/2103.15965
https://arxiv.org/abs/2002.05149
https://arxiv.org/abs/2002.05149
https://arxiv.org/abs/1612.04933
https://arxiv.org/abs/2104.10751v3
https://dx.doi.org/10.2139/ssrn.3503603
https://dx.doi.org/10.2139/ssrn.3503603

Schrijver A (2003) Combinatorial Optimization: Polyhedra and Efficiency,
vol. 24 (Springer-Verlag, Berlin, Heidelberg, Germany).

Tallorin L, Wang JL, Kim WE, Sahu S, Kosa NM, Yang P, Thomp
son M, et al. (2018) Discovering de novo peptide substrates for
enzymes using machine learning. Nature Comm. 9(1):1–10.

Therneau T, Atkinson B (2019) rpart: Recursive partitioning and
regression trees. R package version 4.1-15. Retrieved May 19,
2021, https://CRAN.R-project.org/package=rpart.

Tibshirani R (1996) Regression shrinkage and selection via the
LASSO. J. Royal Statist. Soc. B 58:267–288.

Tsang M, Cheng D, Liu Y (2018a) Detecting statistical interactions
from neural network weights. Sixth Internat. Conf. Learn. Represen
tations (ICLR-18) (International Conference on Learning Represen
tations, Appleton, WI).

Tsang M, Rambhatla H, Liu Y (2020) How does this interaction
affect me? Interpretable attribution for feature interactions. 34th
Conf. Neural Inform. Processing Systems (NeurIPS-20) (Curran
Associates, Red Hook, NY), 6147–6159.

Tsang M, Liu H, Purushotham S, Pavankumar M, Liu Y (2018b)
Neural interaction transparency (NIT): Disentangling learned

interactions for improved interpretability. 32nd Conf. Neural
Inform. Processing Systems (NeurIPS-18) (Curran Associates, Red
Hook, NY), 5809–5818.

Udrescu SM, Tegmark M (2020) AI Feynman: A physics-inspired
method for symbolic regression. Sci. Adv. 6:eaay2631.

Verwer S, Zhang Y (2019) Learning optimal classification trees using
a binary linear program formulation. 33rd AAAI Conf. Artificial
Intelligence (AAAI-19) (Association for the Advancement of Arti
ficial Intelligence, Palo Alto, CA).

Vilone G, Longo L (2020) Explainable artificial intelligence: A sys
tematic review. Preprint, submitted May 29, https://arxiv.org/
abs/2006.00093.

Wang F, Rudin C (2015) Falling rule lists. 18th Internat. Conf. Artifi
cial Intelligence Statist. (AISTATS) (Machine Learning Research
Press, Ft. Lauderdale, FL).

Wang T, Rudin C, Doshi-Velez F, Liu Y, Klampfl E, MacNeille P
(2017) A Bayesian framework for learning rule sets for inter
pretable classification. J. Machine Learning Res. 18:1–37.

West DB (2001) Introduction to Graph Theory. 2nd ed. (Prentice Hall,
Hoboken, NJ).

Brooks et al.: Conjecturing-Based Discovery of Patterns in Data
24 INFORMS Journal on Data Science, Articles in Advance, pp. 1–24, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
2.

48
.1

31
]

on
 0

2
Fe

br
ua

ry
 2

02
4,

 a
t 1

1:
49

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://CRAN.R-project.org/package=rpart
https://arxiv.org/abs/2006.00093
https://arxiv.org/abs/2006.00093

	Conjecturing-Based Discovery of Patterns in Data
	Introduction
	Background and Previous Related Work
	Two Motivating Examples
	A Conjecturing Framework for Discovering Patterns in Data
	Additional Computational Experiments
	Application to COVID-19 Data
	Conclusions

