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Abstract Discovery in mathematics is a prototypical intelligent behavior, and an
early and continuing goal of artificial intelligence research. We present a heuristic
for producing mathematical conjectures of a certain typical form and demonstrate
its utility. Our program conjectures relations that hold between properties of ob-
jects (property-relation conjectures). These objects can be of a wide variety of
types. The statements are true for all objects known to the program, and are the
simplest statements which are true of all these objects.

The examples here include new conjectures for the hamiltonicity of a graph,
a well-studied property of graphs. While our motivation and experiments have
been to produce mathematical conjectures—and to contribute to mathematical
research—other kinds of interesting property-relation conjectures can be imag-
ined, and this research may be more generally applicable to the development of
intelligent machinery.

Keywords Automated conjecturing · Automated mathematical discovery ·
Property-relations conjectures

1 Introduction

Discovery in mathematics is a prototypical intelligent behavior, and an early goal
of artificial intelligence research. While substantial effort has gone into research on
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automating mathematical discovery, this research has lagged the successes of other
areas of artificial intelligence research; and, furthermore, the large and growing
body of research on machine learning has contributed almost nothing to the limited
successes in the development of programs that automate mathematical discovery.

One, of several, activities that are necessary for the discovery of new mathe-
matical facts is the formation of a conjecture. The problem addressed here is how
to produce mathematical conjectures which take the form of a relation between
properties of a mathematical object (property-relation conjectures). We present a
heuristic for producing property-relation conjectures and examples of the success
of this heuristic. While our heuristic idea is not new—it was outlined in the first
paper of this series—we have now implemented it and demonstrated that it works.

The Chvátal-Erdös Theorem [9] is a prototypical example of a property-relation
statement: if the independence number of a graph is no more than its vertex-
connectivity then the graph has a hamiltonian cycle. The independence number
and connectivity numbers are graph invariants—numbers associated with graphs
(the independence number is the size of a largest set of vertices which do not
have an edge between any pair, and the connectivity number is the fewest vertices
which must be removed in order to disconnect the graph). Here, “independence
number is no more than its connectivity number” defines a graph property: for
any particular graph, its independence number is either less than or equal to its
connectivity number, or it is not and its independence number is greater than its
connectivity number. A hamiltonian cycle in a graph is a cycle which visits each
vertex exactly once. So “has a hamiltonian cycle” is a graph property: either a
graph has a hamiltonian cycle or it does not. The Chvátal-Erdös Theorem states
a relation between graph properties: that a graph has one graph property implies
that it has another.

Another example of a property-relation statement is the following open conjec-
ture of our program, discussed below: if the radius of a graph equals its diameter
and the graph is eulerian then the graph is hamiltonian. The radius of a graph
is the minimum distance of any of its vertices to the most distant vertex from
it), and the diameter is the maximum distance between any pair of vertices. The
radius and the diameter are both graph invariants, while “having equal radius and
diameter” is a graph property. The form of this conjecture is also a conditional
(or if-then) statement, asserting a relationship between graph properties.

There are two issues in the production of mathematical conjectures. The first
issue is to produce syntactically correct mathematical statements: this is rela-
tively easy and can be done recursively in terms of atomic propositions and any
collection of propositional operators. The second issue—and real difficulty—is to
produce statements which are of mathematical interest. While the “interest” of a
statement might be taken in a psychological sense, for the purposes of contributing
to scientific research, we take it to mean just that: the statement, if true, should
advance mathematical research. In fact, this can be formulated objectively : the
statement, if true, should say something about a problem that is already being
researched and which is not implied by the existing published corpus of theorems.

These mathematical objects in the conjectures produced by our program can be
of a wide variety of types. The produced statements are true for all objects known
to the program, and are the simplest statements which are true of all these objects.
The program can also be provided with any existing theoretical knowledge and, in
this case, the program is guaranteed to produced statements which are not implied
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by this theory. The examples here include new conjectures for the hamiltonicity
of a graph, a well-studied property of graphs.

While our motivation and experiments have been to produce mathematical
conjectures—and to contribute to mathematical research—other kinds of inter-
esting property-relation conjectures can be imagined, and this research may be
more generally applicable to the development of intelligent machinery. A referee
suggests we add a concrete example of what this claim might mean.

Chomp is a two-player perfect information impartial game, invented by David
Gale in the 1970s [23]. Every Chomp position either has a winning strategy for the
next player to play (an N -position) or for the player that did previously play (a P -
position). We are primarily interested in developing the theory and identification
of P -positions. The reason is that, when a player makes a move, her move results
in a board position for her opponent. If she has a winning strategy and plays
perfectly she will give her opponent a P -position. So her perfect play boils down
to identifying the P -positions that are reachable from her current position.

Together with students in a summer research project we have used the Con-
jecturing program to develop a theory of necessary and sufficient conditions
for Chomp P -positions. This “theory” (consisting mostly of unproved conjectured
statements) can be used for deciding on a move: one heuristic is to choose the
first considered move that is consistent with the theory (and otherwise choose any
move which is maximally consistent). Successful play would constitute intelligent
behavior. While this is work-in-progress it suggests one way ideas used here more
generating mathematical conjectures may be more generally applied to making
intelligent decisions between possible actions.

2 Background & Previous Work

This research extends the authors’ program Conjecturing, which produces invariant-
relation conjectures, and is based on a heuristic of Fajtlowicz [21]. The invariant-
relations program and related experiments are described in [28]. The user of this
program may input example objects of any type, choose invariants (numbers that
can be computed from the objects, specified as functions) that may appear in the
conjecture statements, choose a specific invariant that will appear on the left-hand
side of the conjecture, and choose the form of the inequality: either upper bounds
or lower bounds for the chosen invariant. (We use “type” here in a way consistent
with computer science sense: practically speaking, the “objects” belong to Python
classes—any non-trivial class will have methods with numeric or boolean outputs.)

The reported conjectures came from the domains of graph theory, matrix the-
ory, number theory, and combinatorial game theory. Our program is open-source,
and operates in Sage (a free and growing mathematical computing environment,
similar to Maple, Matlab and Mathematica). The program, examples, and set-up
instructions are available at: http://nvcleemp.github.io/conjecturing/

In 1948 Turing suggested designing machines to do mathematical research as a
starting point towards the design of generally intelligent machines [35]. In the 1950s
Newell and Simon developed the Logic Theorist program, the first mathematical
theorem-proving program of any kind [34]. The automation of theorem proving is
the largest and best-developed area of automated mathematical discovery research.
The 1996 computer proof of the Robbins Conjecture [32] was a milestone in this
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area. Nevertheless, subsequent success has been limited: no other automated proofs
of conjectures of this stature have followed.

In the late-1950s Wang initiated research on automated mathematical conjec-
turing [37]. A variety of programs have since been developed that either attempt
to simulate how research mathematicians make conjectures, or that try to produce
conjectures of interest to mathematicians, or both. These include the programs of
Fajtlowicz and DeLaVina, as well as Lenat’s AM [29–31,16] Epstein’s GT [19,
20] Colton’s HR [11–13,10], Hansen and Caporossi’s AGX [6,7,1], and Mélot’s
Graphedron [33,8]. Graffiti, Graffiti.pc and AGX have led to an especially
large number of publications by mathematical researchers. There is also related
and interesting work on the automation of mathematical discovery by many oth-
ers including the GRAPH program of Cvetkov́ıc and a large group of University
of Belgrade collaborators [15], Brigham and Dutton’s INGRID program [5,18],
the geometry programs of Bagai and collaborators [2,3], the hypergeometric se-
ries work of Wilf and Zeilberger [38], and applications of automatic recognition of
integer-relations of Borwein, Bailey and their collaborators [4].

Fajtlowicz’s Graffiti program produced a number of invariant-relations con-
jectures in graph theory, and was the first program to make research conjectures
in mathematics. Our general-use Conjecturing program was based on his Dal-
matian heuristic. Some of Graffiti’s best known conjectures are bounds for the
independence number of a graph. The residue of a graph (the number of zeros
remaining after repeated application of the Havel-Hakimi procedure to the de-
gree sequence of the graph) is a graph invariant. Graffiti conjectured that the
residue of a graph is no more than the independence number of the graph. This
statement is an inequality where both sides of the inequality are either basic graph
invariants or functions of these, a prototypical invariant-relation conjecture. This
conjecture was originally proved by Favaron, Mahéo and Saclé [22], and has since
been reproved in the literature more than once (see also [26]).

Fajtlowicz’s Dalmatian heuristic comprises a truth-test and a significance test.
Both Graffiti and Conjecturing produce inequalities between algebraic rela-
tions of the input invariants. These are then checked to be true for all examples
that are provided to the program. This is the truth test. If a produced statement
is false for an input object, the statement is rejected as a potential conjecture.
Each statement is then tested for significance with respect to the input objects
and the database of previously produced conjectures. A statement is “significant”
if it is not implied by the totality of previously made conjectures: more concretely,
a statement is significant if there is at least one input object such that the state-
ment gives a better bound for the user-input invariant than any previously pro-
duced conjecture. While significance is precisely defined in the next section, and a
careful example is presented in [28] for invariant-relations statements, it is worth
adding something to this informal description: if sufficient condition conjectures
are generated for a property Q, a proposed sufficient condition (“lower bound”)
P is significant with respect to existing conjectured lower bounds C1, . . . , Ck, if
there is an object which does not have any of the properties C1, . . . , Ck, but which
does have property P .

By the design of the program, each produced conjecture is then “significant”
with respect to the previously produced conjectures. Furthermore, if no-longer-
significant conjectures are removed whenever significant conjectures are added to
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the conjectures store, the number of conjectures (of any particular form) cannot
exceed the number of example objects.

These same ideas are generalized and reproduced in our properties-relations
program. In this case, instead of inequalities (a type of invariant-relation) the
program produces conditional statments (implications, if-then statements). If the
user-specified property follows the if (is the antecedent of the conditional), the
produced statements will give necessary conditions for the given property—these
are analogous to the “upper bound” conjectures of our invariant-relations program.
If the user-specified property follows the then (is the consequent of the conditional),
the produced statements will give sufficient conditions for the given property—
these are analogous to the “lower bound” conjectures of our invariant-relations
program.

The first author described a Dalmatian-style necessary condition heuristic in
[27]. DeLaVina and Waller described and implemented a Dalmatian-style sufficient
condition heuristic for graph theory conjectures in [17] that they call Sophie. The
Sophie version of Graffiti.pc has produced some useful conjectures including the
following: if the independence number of a graph equals its radius then the graph
has a hamiltonian path; this was proved in [17]. A hamiltonian path in a graph is a
path which visits each vertex exactly once, but is not necessarily a cycle. Here the
objects are graphs, and the properties are “has equal independence number and
radius” and “has a hamiltonian path”. Sufficient conditions for a graph having a
hamiltonian path have been of continuing interest [24,25].

2.1 Dalmatian Heuristic for Properties

We have successfully implemented the heuristic previously described as “future
work” in [28]. The main purpose of this paper is to provide examples that demon-
strate the success of this idea. That description of our heuristic is reproduced here
in order to make this paper self-contained.

The analogues of upper or lower bounds for an invariant of interest are neces-
sary or sufficient conditions for a property of interest. Let P be the property that
an integer is perfect. If sufficient conditions for an integer to have this property are
desired, a conjecture-making program would need to produce property-expressions
Q1, Q2, . . ., and statements of the form, “If an integer has property Qi then it has
property P” (or, more simply, “If Qi then P”). If necessary conditions are desired
then the program would need to produce statements of the form, “If an integer
has property P then it has property Qi.”

Let O1, . . . ,On be examples of objects of a given type. Let Q1, . . . , Qk be
properties. And let P be a property for which conjectured necessary or sufficient
conditions are of interest. If the objects are the integers G1, . . . , Gn, and P is the
property “is perfect” then P (Gi) would be True if Gi is perfect and False if Gi is
not perfect.

An unlimited stream of boolean functions of the properties can then be formed:
Q1 ∧Q2, ¬Q1, Q1 ∨Q3, (Q2 ∧Q4)∨Q3, etc. This stream can be produced in any
way at all. In fact they are produced systematically, naively, and completely. The
user-given properties are bounds of complexity 1. Unary-function of these are
bounds of complexity 2, while binary functions of these are bounds of complexity
3. In general, a unary function of a previously generated bound of complexity k
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has complexity k + 1, while a binary function of previously generated bounds of
complexity k and l has complexity k + l + 1. We later make claims about the
“simplicity” of a conjectured bound for P : we say that one conjectured bound is
simpler than another if it is is less complex (if it has smaller complexity in this
recursive definition). In fact our program recursively generates all possible bounds
of increasingly higher complexity. No heuristics are used to attempt to intelligently
prune this list of expressions prior to their use by the truth and significance tests.

These expressions can then be used to form conjectured necessary or sufficient
conditions for P . If we are interested in necessary conditions for P , say, we can
form the statements P ⇒ Q1∧Q2, P ⇒ ¬Q1, P ⇒ Q1∨Q3, P ⇒ (Q2∧Q4)∨Q3,
etc. These statements can be interpreted as being true for all the objects of the
given type. That is, the statement P ⇒ Q1 ∧Q2 can be interpreted as, “For every
object O, P (O)⇒ Q1(O) ∧Q2(O).” A conjectured necessary condition Q is only
added to the database of conjectures if the property passes the following two tests.

1. (Truth test). The candidate conjecture P ⇒ Q is true for all of the stored
objects O1, . . . ,On, and

2. (Significance test.) There is an object O ∈ {O1, . . . ,On} such that ¬Q(O) ∧
(C1(O) ∧ . . . ∧ Cr(O)), where C1, . . . , Cr are the currently stored conjectures.
That is, the candidate conjecture would give a better necessary condition for
P than any previously conjectured necessary condition.

If we are interested in sufficient conditions for P we can form the statements
Q1 ∧ Q2 ⇒ P , ¬Q1 ⇒ P , Q1 ∨ Q3 ⇒ P , (Q2 ∧ Q4) ∨ Q3 ⇒ P , etc. These
statements can be interpreted as being true for all the objects of the given type.
That is, the statement Q1 ∧ Q2 ⇒ P can be interpreted as, “For every object
O, Q1(O) ∧Q2(O) ⇒ P (O).” A conjectured sufficient condition Q is only added
to the database of conjectures if the property passes the Truth and Significance
tests. In this case the significance test would be as follows: Check that there is
an object O ∈ {O1, . . . ,On} such that Q(O) ∧ ¬(C1(O) ∨ . . . ∨ Cr(O)), where
C1, . . . , Cr are the currently stored conjectures. That is, the candidate conjecture
would give a better sufficient condition for P than any previously conjectured
sufficient condition.

Another way to think about property-relation conjectures is in terms of the
sets of objects that have some property. Let P be the set of objects that have
property P . Necessary conditions for membership in P define a super-class N of
P. What is wanted are conjectures that make this super-class smaller and smaller.
So a conjectured necessary condition Q is informative if, together with the previous
conjectures, it defines a smaller super-class N ′ with P ⊆ N ′ ⊂ N .

Similarly, sufficient conditions for membership in P define a sub-class S of P.
What is wanted here are conjectures that make this sub-class larger and larger. So
a conjectured sufficient condition Q is informative if, together with the previous
conjectures, it defines a larger sub-class S′ with S ⊂ S′ ⊆ P.

3 Examples

We now give examples of conjectures produced by our program; they address
two existing research areas in graph theory. There is nothing particular about
graphs for our program. It does happen to be the case that the authors are graph
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theorists and have spent substantially more time coding graph theoretic invariants
and properties than invariants and properties for any other domain. Also, for this
reason, the authors are more familiar with open questions in graph theory than in
other mathematical domains.

The form of the conjectures are unquantified conditional statements; these
must then be interpreted as statements quantified over some domain. The obvious
domain is the type of the objects. Nevertheless other more restrictive domains are
also possible—and the user may have had a specific domain in mind. Thus the
interpretation of the produced conjecture statements may vary. While the input
objects may all be graphs for instance, if these graphs all happen to be connected,
then the conjecture statement might variously be interpreted as being about either
graphs, connected graphs, or some other class of graphs.

A user of our program, must supply three kinds of inputs to the program:

1. A list of objects. The type is arbitrary but to get meaningful results they
will all represent the same mathematical type of object. For instance, if you
want to generate conjectures about graphs, and c5, k5 and petersen are pre-
defined graph objects, you would define objects = [c5, k5, petersen], and
give objects as a parameter to the program.

2. A list of properties. These must be functions that are defined for the type of ob-
jects in the objects list. For instance, if is hamiltonian and is even hole free

are pre-defined boolean-valued graph functions, you would define properties

= [is hamiltonian, is even hole free ] and give properties as a parameter
to the program.

3. A positive integer listing the position of the invariant in the list of properties
that you would like to conjecture bounds for from the list of properties.
For instance if conjectures for the hamiltonicity of a graph are desired, the
user would enter 0 in the list of parameters to the program, or set the input
parameter property (below) to 0.

4. A fourth kind of input is optional: a list of known necessary or sufficient con-
ditions (properties, dependent on conjecture type) which the produced con-
jectures must improve on, at least for a single object; that is, any produced
conjecture must neither be implied by the totality of the previous conjectures
together with these additionally listed properties. For instance, in order for
a graph to be hamiltonian, the graph must necessarily be connected (that
is, there must be a path between any pair of vertices). If necessary condi-
tion conjectures for hamiltonicity are desired, the user would define theory =
[is connected] as a parameter to the program.

Here is the simplest example of the commands needed in order to generate con-
jectures. This program defines three variables and inputs them into the properties-
relation conjecturing function propertyBasedConjecture. Here we have only two
properties, and only one example object; these are defined by built-in Sage func-
tions. The default is to generate sufficient conditions for the specified property.
To generate necessary conditions, the user would add the parameter sufficient

= False to this function call. And to add known theory stored as the list named
theory, the user would add the parameter theory = theory.

properties = [Graph.is_hamiltonian,Graph.is_connected]

property = properties.index(Graph.is_hamiltonian)
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objects = [graphs.CompleteGraph(3)]

propertyBasedConjecture(objects, properties, property)

The sentential connectives or propositional operators that are built-in to the
program and which may appear in the produced conjectures are: “->”, “|” , “^”,
and “&” are binary operators which represent implication, disjunction (inclusive-
or), xor (exclusive-or), and conjunction (and), respectively; “~” is a unary operator
which represents negation.

3.1 Graph Hamiltonicity

Determining whether a graph is hamiltonian is NP-hard; this is one reason research
on necessary or sufficient conditions for hamiltonicity has been of continuing in-
terest: Gould’s survey papers list a few hundred references [24,25].

We first experimented with generating sufficient conditions for graph hamil-
tonicity. The example objects given to the program were the complete graphs on
three and four vertices (k3 and k4), the path on four vertices p4, and the Petersen
graph; the two complete graphs are hamiltonian, while the other two graphs are
not. The properties given to the program included all built-in Sage graph prop-
erties, together with a few properties we coded. The first run produced a single
conjecture:

(is_eulerian) -> (is_hamiltonian)

We interpret this conjecture as: for every graph, if the graph is eulerian then the
graph is hamiltonian. A graph is eulerian is there is a cycle which contains all of
the edges of the graph; of the four input graphs, only k3 is eulerian: k3 is the only
graph which satisfies the sufficient condition. In order then for this conjecture
to be true of all input objects, it must only be true for k3 and k3 is indeed
hamiltonian. The program could potentially have made one more conjecture in
order to account for the hamiltonicity of k4, but it did not find one before it timed
out. The conjecture is false; it is easy to find counterexamples: for example, the
graph formed by identifying a single vertex from each of two 4-cycles is eulerian
but not hamiltonian.

Now it is possible to take all coded graphs as the initial input of objects to
the conjecturing program. There will be a single run—with potentially as many
conjectures as input objects—all of which are true for these objects. Another way
to use the program—and the way that we have done in our experiments—is to
begin with only a few (four) input objects and add an object to the input list
only if it is a counterexample to some previously generated conjecture. These
counterexamples may be constructed by the user or may be found by systematic
search through all small graphs. The advantage to this iterative use of the program
is that, since only significant examples are added to the input list, and the number
of generated conjectures cannot be more than the number of input objects, the
number of conjectures is limited—researchers generally prefer fewer rather than
more conjectures—and also they tend to be less complex—there are fewer objects
that each conjecture must satisfy.

There is also something distinctly human in this approach: humans focus on a
limited number of examples which have previously made some impression—rather
than on comprehensive catalogs of examples.
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Fig. 1 Gould’s counterexample: an eulerian, regular, two-connected graph which is not hamil-
tonian

We report now on a few more conjectures from the subsequent runs in this
experiment. The third run produced just the following two conjectures:

(is_clique) -> (is_hamiltonian)

(is_connected_dirac) -> (is_hamiltonian)

A graph is a clique if every pair of vertices are adjacent; these graphs are hamil-
tonian. A connected graph is dirac if the graph has n vertices and each vertex is
adjacent to at least n

2 others. Dirac’s Theorem says that these graphs are hamil-
tonian. So these two conjectures are both true.

After a few rounds the program made the following conjecture.

(((is_eulerian) & (is_regular)) & (is_two_connected)) -> (is_hamiltonian)

A graph is regular if each vertex is adjacent to the same number of other vertices.
It is two-connected if at least two vertices must be removed in order to disconnect
the graph. Gould found a 20 vertex counterexample (Fig. 1) to this conjecture:
it is eulerian, regular, two-connected but not hamiltonian. The last conjecture of
this run of sufficient condition conjectures for graph hamiltonicity is:

((has_radius_equal_diameter) & (is_eulerian)) -> (is_hamiltonian)

The authors do not know a counterexample.
Finally we report generated necessary condition conjectures for hamiltonicity.

Interestingly, only a handful of necessary conditions appear in the literature; these
are far exceeded by the number of published sufficient conditions. One obvious
necessary condition is that the graph be two-connected. Another, due to Van Den
Heuvel, is defined in terms of the graph’s eigenvalues [36]. Both of these appeared
as conjectures of our program. But, since we were interested in conjectures that
potentially advanced beyond what researchers already know, we added these to
the theory parameter, thereby requiring the produced conjectures to not be con-
sequences of these known bounds: so every conjectured necessary condition had to
be false for at least one input graph which was two-connected and for at least one
input graph which had the Van Den Heuvel property. Here is the complete list of
conjectures from the last round:

(is_hamiltonian) -> (((is_planar) & (is_regular)) -> (is_anti_tutte2))

(is_hamiltonian) -> ((is_class1) | (has_radius_equal_diameter))

(is_hamiltonian) -> (((is_van_den_heuvel) -> (is_overfull))^(is_class1))

(is_hamiltonian) -> (((is_cubic) -> (is_planar)) | (is_bipartite))
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The degree of a vertex is the number of edges adjacent to that vertex. The chro-
matic number is the fewest number of colors required to assign different colors
to adjacent vertices. A graph is planar if it can be drawn on the plane without
crossed edges; class1 if the chromatic number is no more than the maximum de-
gree of any vertex; overfull if the number n of vertices is odd and twice the number
of edges is more than n-1 times the maximum degree; cubic if every vertex is ad-
jacent to exactly three others; and bipartite if the vertices can be partitioned into
two independent sets. The domination number of a graph is the fewest number of
vertices so that each vertex is either in this collection or adjacent to one of these;
then a graph is anti tutte2 if it is connected and its independence number is
no more than one less than the sum of its domination number and radius. These
conjectures are open: we do not know counterexamples for any of these.

3.2 Even Hole-Free Graphs

A hole in a graph is a cycle with more than three vertices; and an anti-hole is the
complement of a hole. A graph is perfect if the chromatic number of every subgraph
equals the size of a largest clique. The very well-known Strong Perfect Graph
Theorem is stated in terms of non-existence of subgraphs which are odd holes
(“odd hole-free”) or odd anti-holes (“odd anti-hole-free”). This research in turn
inspired research into characterizing graphs which are “even hole-free” [14]. Both
necessary and sufficient conditions for graphs to have this property are of interest to
researchers. The following conjecture was from the initial run of sufficient condition
conjectures.

(is_chordal) -> (is_even_hole_free)

A graph is chordal if no induced cycle has more than three vertices. This conjecture
is true. is chordal was then added to the theory variable. Here are open sufficient
condition conjectures.

(~(is_two_connected)) & (has_residue_equals_alpha)) -> (is_even_hole_free)

((~(is_eulerian)) & (diameter_equals_twice_radius)) -> (is_even_hole_free)

((~(is_claw_free)) & (has_residue_equals_alpha)) -> (is_even_hole_free)

(((is_circular_planar) -> (is_perfect)) -> (is_clique)) -> (is_even_hole_free)

A claw in a graph is an induced subgraph consisting of a vertex adjacent to three
independent vertices; a graph is claw-free if it does not have a claw.

4 Discussion

The main purpose of this paper was to demonstrate the effectiveness of Fajt-
lowicz’s Dalmatian heuristic for the generation of property-relation conjectures
in mathematics. We have produced a working (and open source) program and
demonstrated its utility for producing conjectures that advance research on two
different graph theory questions. Our program extends what can be done with
automated mathematical discovery programs.

Several points are worth mentioning. As with our invariant-relations conjectur-
ing program, this program is domain independent: if the program is given matrix
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examples and matrix properties, for instance, it would produce necessary or suffi-
cient conditions for a specified matrix property.

Also no “expert knowledge” is required to prepare the program for use in a
domain. That is, the “knowledge” required for the program to run is some object
examples and some suitable properties. These could be found in textbooks for a
specific domain. We expect that a good undergraduate mathematics major could
code in all the properties, objects, and theoretical bounds found in an undergrad-
uate text. The undergraduate of course must have some “mathematical maturity”
and would be more expert than say an English major, but wouldn’t have neces-
sarily published any mathematical papers or have the comprehensive expertise of
her teachers.

Relatedly, all published properties, objects, and theorems in a given mathemat-
ical domain could be coded in. This would require substantial and collaborative
effort—but may have significant payoff. We have begun doing this ourselves in
the case of graph theory. In this case, it would not be possible for any expert to
perform “better” than our program. That is, the expert may aim to produce con-
jectured statements using any known (published) properties that are true for all
known examples and are not implied by the known theory. The program by design
produces the least “complex” statement (by any natural measure—for instance
the number of atomic properties that appear in the statement) that is true for all
known examples and is not implied by the input theory. At least the expert could
not produce a simpler conjecture.

It should also be emphasized that, as with all successful automated mathemat-
ical discovery programs, success is by design. This program together with every
other program that contributes to mathematical research was designed to con-
tribute to mathematical research. In this case, it was because mathematicians are
looking, for instance, for new necessary and sufficient conditions for the hamiltonic-
ity of a graph and our program was designed to produce this kind of conjecture.
This is in contrast with programs like Lenat’s AM. Lenat’s program reproduced
several well-known mathematical conjectures, for instance Goldbach’s conjecture
that every even integer is the sum of two primes—but it did not make new con-
jectures, nothing that would advance mathematics. Goldbach’s conjecture might
be described as a conjecture about representations of integers by sums. Lenat’s
program was not designed to make conjectures about representations of integers
by sums—and, thus, there was no reason to expect it to make a contribution to
this research.

There are several things that can be done to improve the success of our pro-
gram’s utility to domain scientists. We mentioned one: to code all known proper-
ties, key examples and theorems in the given domain. Here are three more ideas
that can improve the utility of our program:

1. The conjectures our program produces are the simplest statements using the
given ingredients that are true for all provided objects. Nevertheless these
statements may be quite complicated. A mathematician, like any other human,
can have a difficult time comprehending complex statements. In that case, they
are in danger of losing their utility. It is often useful to find restricted domains
where simpler statements are true. It is not clear how to automate finding a
suitable domain that allows for simple form (or scannable, or comprehendible)
conjectures.
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2. The program requires example objects as input. The produced conjectures are
true of all of these objects. If all published examples were included as inputs, the
program would produce conjectures that are true for all of these. Nevertheless,
the conjectures may be false. To find counterexamples to false conjectures then
would necessarily expand knowledge in the investigated domain. One approach,
which we have experimented with, is to systematically produce objects from the
simplest to the more complex. For instance, for graphs one could first generate
all two vertex graphs, then all three vertex graphs, etc. This can be done with
more or less sophistication. Nevertheless, only graphs of very small size can
be produced: the numbers of possible graphs grows exponentially. The case of
most other interesting mathematical objects is likely similar. This means that
only small sized counterexamples could be found by systematic generation. Of
course counterexamples may be of larger sizes. A better approach would be
intelligent generation of potential counterexamples to conjectures. We do not
know how to do this—but it would be a substantial contribution to research
on automated mathematical discovery.

3. It should be possible and useful for invariant-relation and property-relation
programs to interact. We know how to use invariants to define properties, and
how to use properties to define invariants; but we do not know how to make
these two programs interact systematically in a way that helps the user advance
her mathematical goals.

Finally, we see conjecturing—and conjecture-revision in the face of contra-
dictory data (counterexamples)—as a central feature of intelligence. There is a
growing body of evidence, especially from visual perception, that we are con-
stantly making conjectures about our world based on incomplete perceptual data.
Intriguing research on split-brain patients demonstrates that the linguistic brain
will generate (conjecture) stories about the limited data available to it. One side
of the brain for instance may only know details, not the “whole story”, but, as the
halves cannot communicate, the other half can only guess at the missing details—
and does so.

It is worth emphasizing then, that our program is generalizable to non-mathematical
property-relation statements. The ingredients are the same: example objects and
properties of those objects. The only requirement is that the object-types have
computable properties. We believe and hope that quick on-the-fly conjecture-based
heuristics might be used in the design of machines that perform a variety of intel-
ligent behaviors.
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