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Abstract

We discuss a new implementation of, and new experiments with, Fajtlowicz’s
Dalmatian conjecture-making heuristic. Our program makes conjectures about
relations of real number invariants of mathematical objects. Conjectures in ma-
trix theory, number theory, and graph theory are reported, together with an
experiment in using conjectures to automate game play. The program can be
used in a way that, by design, advances mathematical research. These experi-
ments suggest that automated conjecture-making can be a useful ability in the
design of machines that can perform a variety of tasks that require intelligence.
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1. Introduction

We have reimplemented Fajtlowicz’s useful but little-known Dalmatian heuris-
tic for the automation of mathematical conjecture-making (this heuristic, for
instance, has never been referenced in the pages of this journal). The heuris-
tic is general and can be used to conjectured relations between real number
invariants of any objects, mathematical or otherwise. We include examples of
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conjectures in number theory, matrix theory, graph theory and the characteri-
zation of game positions. One of the number theory conjectures implies, and is
stronger than, Goldbach’s Conjecture. Some of the number theory conjectures
seem to imply the Riemann Hypothesis. And some of the graph theory conjec-
tures would advance the lower bound theory of the independence number of a
graph, a widely-studied NP-hard graph invariant. We have also implemented an
idea, suggested to us by Barry Mazur, to include existing theorems in the pro-
gram; when used in this way the program is guaranteed to produce statements
that are not implied by existing mathematical knowledge.

Our program often makes interesting and useful conjectures on the basis of
only a few examples. Humans, ordinarily and of necessity, make decisions based
on very limited data. A general automated conjecture-making module that can
make plausible and useful guesses based on limited data may be a central ar-
chitectural feature in the design of machines that are intelligent. Guesses can
be used, for instance, to constrain a search of possible actions. Fajtlowicz intro-
duced his Dalmatian heuristic for the automation of mathematical conjecture-
making more than 20 years ago [1]. Simply put, the heuristic is to produce
a considered mathematical statement if it is both true—with respect to some
given examples (matrices, integers, graphs, etc.)—and if the statement gives
new information about those objects, in particular, if it says something about
at least one of the objects which is not implied by any other stored statement
or conjecture.

It was very successful—both in limiting the number of conjectures produced
by earlier versions of his Graffiti program and in producing conjectures of
interest to research mathematicians. His student DeLaVina reimplemented the
heuristic in a program that produces conjectures that have led to research and
publications by mathematicians [2]; otherwise the heuristic has not been used.
Fajtlowicz made some experiments to demonstrate the domain independence of
the Dalmatian heuristic; nevertheless, the predominant and best-known uses of
the heuristic—in the programs of Fajtlowicz and DeLaVina—has been in the
production of graph theory conjectures. But the heuristic is not specific to the
production of graph theory conjectures.

Our program is open-source, written in Python and C, and implemented as
a Sage package. Details about the acquisition and use of our program, the Sage
open-source mathematical computing environment, and how to reproduce our
results are relegated to the Appendix.

Our experiments in implementing and applying this heuristic, including in
domains where the authors have no more knowledge than anyone who has
browsed a textbook or reference book, lead us to make several conclusions,
which we will elaborate and discuss.

1. Successful mathematical discovery heuristics can be applicable in a variety
of mathematical domains.

2. Good conjectures can be based on very limited data.

3. Mathematical discovery programs should aim to produce conjectures that
address and advance pre-existing mathematical questions.
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4. Intelligent conjecture-making programs for a domain do not require de-
veloper expertise in that domain.

Some of these conclusions should be surprising and, we hope, inspire new re-
search in automated scientific discovery.

We see conjecture-making—and conjecture-revision in the face of contra-
dictory data (counterexamples)—as a central feature of intelligence. We make
guesses, based on our previous experience in relevantly similar situations, learn
that our guesses are wrong, revise them, and test them against our experience.

2. Background & Related Work

Turing, famously, proposed the idea of designing intelligent machines as
an engineering problem, and proposed a test for evaluating the success of such
machines. In 1948 he suggested designing machines to do mathematical research
as a starting point: mathematical research certainly requires intelligence and, it
would be a good starting point as mathematical research would “require little
contact with the outside world” [3]. In the 1950s Newell and Simon developed
the Logic Theorist program that could prove (some) theorems in first-order
logic, and went on to predict that a computer would discover and prove an
important mathematical theorem within another decade [4]. Success did not
come quite that quickly—but there has been significant progress in many areas
of automating mathematical discovery, and there is no theoretical impediment
to continued improvement. There is every reason to believe that Newell and
Simon’s prediction will be achieved—and likely sooner rather than later.

The automation of theorem proving is by far the largest and best-developed
area of automated mathematical discovery research. A highlight in this area was
the 1996 computer proof of the Robbins Conjecture [5]. More recently Timothy
Gowers, a Fields Medalist, and likely the most accomplished mathematician to
do research in automated mathematical discovery has, together with Mohan
Ganesalingam, developed a theorem-proving program2.

Research on automated conjecture-making was initiated by Wang in the late-
1950s [6]. His Program II produced thousands of statements in propositional
logic that could be considered as conjectures or potential theorems. His program
included heuristics for deciding which statements to output. Evaluated as a tool
for advancing mathematical research, Wang’s program was a failure. He wrote:

It was at first thought that these crude principles are sufficient to
cut down the number of theorems to a degree that only a reasonably
small number of theorems remain. It turns out that there are still too
many theorems. The number of theorems printed out after running
the machine for a few hours is so formidable that the writer has not
even attempted to analyze the mass of data obtained [6].

2A preprint of their paper is available at: arxiv.org/abs/1309.4501.
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What Wang really wanted was for his program to produce a limited number of
statements of interest to logicians. Wang selected a few statements to include
in publication—but what was really needed was a way for the program itself to
identify the interesting, useful or important statements.

The first program to make conjectures leading to published mathematical
research was Fajtlowicz’s Graffiti program [7, 8, 9, 10, 1]. An early version of
Graffiti was called the “Sorcerer’s Apprentice” [11] because the program, like
Wang’s, produced a large number of statements. In the Goethe poem (and the
Disney Fantasia version with Mickey Mouse) a sorcerer’s apprentice intends to
use his master’s spells to animate a broom to help him carry a bucket of water
but he ends up with so many brooms and buckets of water that the “help” is no
help at all—the flood of water is a bigger mess than he had to clean up in the first
place. The Sorcerer’s Apprentice Problem is how to reduce the flood of potential
conjectures to a useable or scannable number—how to design a program to
produce just the most “significant”, ‘interesting” or useful statements? It is not
difficult to program a computer to produce an endless stream of mathematical
statements. And given a stream of mathematical statements, there is a chance
that some of these statements will be of mathematical interest. The problem is
to produce just these ones.

This problem was remedied by Fajtlowicz’s invention of his Dalmatian heuris-
tic, implemented in early-1990s versions of Graffiti [12]. The Dalmatian
heuristic, by design, limits both the quantity of output statements and guar-
antees the quality of the output statements. The program cannot make any
more conjectures than the number of objects being considered (stored in the
program)—so the number of generated conjectures is fundamentally limited.
Each conjecture must be significant with respect to at least one object—each
must provide better information about a stored object than any of the other
conjectures. When applied to the problem of finding bounds of invariants—in
cases where bounds are of pre-existing research interest—and provided with ex-
amples (objects) where existing theory does not suffice to predict the value of
the invariant for the example, a program implementing the Dalmatian heuristic
will produce a conjecture. In the sense that the truth of the conjecture would
advance existing theory, the conjecture can be said to be interesting or signif-
icant. The utility of the output can be further improved by including existing
knowledge in the program. We will discuss one experiment implementing this
new idea.

The Graffiti program and some of its conjectures are described in Fajtlow-
icz’s papers and in [13]. The Dalmatian heuristic first appears in [1]. DeLaVina’s
Graffiti.pc program, a successor to Graffiti which implements this heuris-
tic, is described in [2]. Selected conjectures of Graffiti with commentary were
collected by Fajtlowicz and included in his evolving report Written on the Wall
(WoW); these were distributed by email to interested researchers3. The con-

3A version from 2004—possibly the last version Fajtlowicz distributed—can be found on
the first author’s blog at: independencenumberproject.wordpress.com
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jectures of Graffiti.pc are collected by DeLaVina in Written on the Wall II
(WoW2)4.

It is worth noting some differences between these programs. Fajtlowicz ex-
perimented with a variety of heuristics and only used a small number of objects
(predominantly graphs). DeLaVina’s Graffiti.pc could compute, maintain
and use data from millions of graphs. Graffiti was written in Pascal, had a
command-line interface, and was not generally distributed. Graffiti.pc was
written in C++ and Visual Basic, was designed with other users in mind, has
an attractive GUI interface, and was distributed to interested students and re-
searchers. The code for these programs was not distributed. Our program shares
only its use of the Dalmatian heuristic with Graffiti and Graffiti.pc. Our
code is freely available to be downloaded, experimented with, modified, and
used. It is a goal of this project to encourage the general use and experimen-
tation with conjecture-making programs, and to make this easy. The use of
existing bounds to improve conjecture quality is new to the described program.
Fajtlowicz reports that the conjectures in [1] were based on a database of some
600 graphs; the memory available on the computers of its day were a natural
limitation on the number of objects that could be used by Graffiti. DeLaVina
often uses a database of all connected graphs up to a small number of vertices,
with typically more than a million graphs. While the computers our program
runs on have relatively huge amounts of memory, and our program could use
large numbers of objects, we have in practice only used very small number of
objects in generating conjectures. The number it can use is limited only by the
memory limits of the machine it is on. We can, and have, generated millions of
objects in our searches for counterexamples to its conjectures.

A variety of programs have been developed that either attempt to simulate
how research mathematicians make conjectures, or that try to produce conjec-
tures of interest to mathematicians, or both. These include the programs of
Fajtlowicz and DeLaVina, as well as Lenat’s AM [14, 15, 16, 17], Epstein’s GT
[18, 19], Colton’s HR [20, 21, 22, 23], Hansen and Caporossi’s AGX [24, 25, 26],
and Mélot’s Graphedron [27, 28]. Graffiti, Graffiti.pc and AGX have
led to an especially large number of publications by mathematical researchers.
There is also related and interesting work on the automation of mathematical
discovery by many others including the GRAPH program of Cvetkov́ıc and a
large group of University of Belgrade collaborators [29], Brigham and Dutton’s
INGRID program [30, 31], the geometry programs of Bagai and collaborators
[32, 33], the hypergeometric series work of Wilf and Zeilberger [34], and applica-
tions of automatic recognition of integer-relations of Borwein, Bailey and their
collaborators [35].

4Available at: cms.uhd.edu/faculty/delavinae/research/wowII/index.htm. DeLaVina
also maintains a lists of papers inspired by conjectures of both Graffiti and Graffiti.pc
(at: cms.uhd.edu/faculty/delavinae/research/wowref.htm)
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3. The Dalmatian Heuristic

Fajtlowicz’s Dalmatian heuristic is used to conjecture relations between real
number invariants of objects. Many common object-types, including graphs,
natural numbers, and matrices, have associated real number invariants. (Some
mathematical objects, including arbitrary topological spaces, do not obviously
have associated real number invariants). The numerical invariants of a graph
include the number of vertices of the graph, its number of edges, the maximum
degree of any of the vertices, among numerous others. The numerical invariants
of a matrix would include the determinant of the matrix, its rank, the number
of rows, etc. The numerical invariants of a natural number would include the
number itself, its number of factors, the number of primes no more than the
number, and the number of distinct primes in its unique factorization.

It is possible to generate conjectures using only a single stored object. Coun-
terexamples to existing conjectures can be added as additional objects. On this
approach, all objects in the database are included exactly because they had
some theoretical value—no object is included arbitrarily. Fajtlowicz suggests
that this approach may have its own benefits when conducting research [1].
The produced conjectures are based on a limited number of examples of objects
of the given type.

Let O1, . . . ,On be examples of objects of a given type. Let α1, . . . , αk be
real number invariants. And let α be an invariant for which conjectured upper
or lower bounds are of interest. An unlimited stream of algebraic functions of
the invariants can then be formed: α1 + α2,

√
α1, α1α3, (α2 + α4)2, etc. (One

natural way to do this, and our own approach, is to grow trees representing
these expressions with operators representing algebraic operations on the non-
leaf nodes—with the number of sub-nodes equal to the arity of the operator—
and invariants on the leaf nodes.) These expressions can then be used to form
conjectured bounds for α. If we are interested in upper bounds for α, say, we
can form the inequalities α ≤ α1 + α2, α ≤ √α1, α ≤ α1α3, α ≤ (α2 + α4)2,
etc.

These inequalities can be interpreted as being true for all the objects of the
given type. That is, the inequality α ≤ α1 + α2 can be interpreted as, “For
every object O, α(O) ≤ α1(O) + α2(O).” A conjectured upper bound u is only
added to the database of conjectures if the bound passes the following two tests.

1. (Truth test). The candidate conjecture α ≤ u is true for all of the stored
objects O1, . . . ,On, and

2. (Significance test.) There is an object O ∈ {O1, . . . ,On} such that u(O) <
min{u1(O), . . . , ur(O)}, where u1, . . . , ur are the currently stored conjec-
tures. That is, the candidate conjecture would give a better bound for
α(O) than any previously conjectured (upper) bound.

These criteria capture what Fajtlowicz calls the “Principle of the Strongest
Conjecture”: make the strongest conjecture for which no counterexample is
known. By design, the truth test guarantees that the program does not know
a counterexample, and the significance test guarantees that each conjectured
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bound is “stronger” (gives a better bounding value) than any other—at least
for a single object known to the program.

What follows is pseudocode for this main loop of our program for the case
where conjectured upper bounds for some invariant is desired. upper bound, a
potential conjectured upper bound for invariant, is an expression constructed
from the invariants and operators included in the program. objects is the list
of examples known to the program. The value of invariant and upper bound
applied to each O in objects is a real number; similarly, the value of u applied
to O, for each u in conjectured upper bounds and each O in objects is a
real number. In the case where both the truth and significance tests are passed,
upper bound is added to the conjectures store conjectured upper bounds. The
main loop for the case of lower bound conjectures would parallel this.

def truth(invariant, upper_bound, objects):

for O in objects:

if invariant(O) > upper_bound(O):

return Fail

else:

return Pass

def significance(upper_bound, conjectured_upper_bounds, objects):

for O in objects:

if upper_bound(O) < min([u(O) for u in conjectured_upper_bounds]):

return Pass

else:

return Fail

def dalmatian(invariant, upper_bound, conjectured_upper_bounds, objects):

if truth(invariant, upper_bound, objects)==Pass and

significance(upper_bound, conjectured_upper_bounds, objects)==Pass:

conjectured_upper_bounds += [upper_bound]

def main(objects, invariants, invariant):

conjectured_upper_bounds = []

while(stopping_condition == False):

upper_bound = generate_next_potential_upper_bound()

dalmatian(invariant, upper_bound, conjectured_upper_bounds, objects)

Here is a concrete illustration of how the Dalmatian heuristic works, with an
example from number theory—as the invariants here should be generally known.
We will step through the generation of conjectured lower bounds for π(x), the
number of primes no more than x. Note, here, that π(5) = 3 and π(16) = 6.
So, ideally, we will generate lower bounds for π(x) where the maximum of the
conjectured lower bounds applied to the object 5 is 3, while the maximum for
16 is 6.

The initial objects are 5 and 16, the invariants used to form potential lower
bounds are sum of digits, number prime factors, and number of divisors,
while the operators are ˆ2, +, and +1. Here we also assume that, after a signifi-
cant conjecture is added to the conjectures store, that insignificant conjectures
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are removed. The order that potential lower bounds are considered corresponds
to the iteration number in Table 1. First all of the invariants themselves (each
represented by a tree with a root and no other nodes) are considered, followed
by the application of the unary squaring operator to these invariants, followed
by application of the binary sum operator applied to each distinct pair of in-
variants. Expressions formed with the unary “add 1” operator are never formed
as the program stops after the ninth iteration, at which point the conjectures in
the conjecture store exactly predict the value of π(x) for all objects x in {5, 16}.

The considered conjecture in Iteration 1 in Table 1 is “the sum of the digits
of an integer x is no more than π(x)”. This is not true of all objects known
to the program, does not pass the truth test, and the conjecture store remains
empty. The next considered conjecture is “the number of prime factors of any
integer x is no more than π(x)”. This conjecture passes the truth test, as it
is true for all known objects, and trivially passes the significance test. The
conjectures store is updated to include this lower bound. The considered con-
jecture in Iteration 3 is “the number of divisors of an integer x is no more than
π(x)”. This is true for all of the objects and is significant as this lower bound
is better than the number prime factors lower bound for at least one of the
known objects; so number prime factors is added to the conjectures store. In
fact it is at least as good for all the known objects. Since there is no object
x in {5, 16} where number prime factors(x) > number of divisors(x). The
number of divisors bound is removed from the conjectures store as insignif-
icant. The next change to the conjectures store comes after Iteration 9. The
considered conjecture is “the number of prime factors of an integer x plus the
number of its divisors is no more than π(x)”. This is true for all known ob-
jects, and the bound passes the truth test. The bound gives a larger value than
number of divisors for at least one known objects and is thus significant and
added to the conjecture store. In fact number of divisors is no longer a signif-
icant bound and it is removed. At this point, for each object x, the maximum
of the conjectured bounds equals the actual value of π(x). No further bounds
can be significant and the program stops.

Some of Graffiti’s best-known conjectures are the following lower bounds
for the independence number α of a graph (the maximum number of pairwise
non-adjacent vertices in the graph, an NP-hard-to-compute graph invariant),
and were made prior to the addition of the Dalmatian heuristic to that program5.

1. If G is a connected graph then d̄ ≤ α, where d̄ is the average distance
between distinct vertices of G. Both the average distance of a connected
graph and the independence number of a graph are well-studied concepts.
This conjecture was proved by Chung [36].

2. If G is a connected graph then r ≤ α where r is the radius of G. This
conjecture was originally proved by Erdős, Saks and Sós in [37]. Another

5The Dalmatian version of Graffiti could have also made these conjectures—they, in
fact, were replicated by a Dalmatian-based conjecture-making program of the first author and
Patrick Gaskill; see the blog at: independencenumber.wordpress.com for details.
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Lower bound Values Truth Significance Conjectures
Expression Test Test Store

1. sum of digits 5 ≤ 3 Fail N/A ∅
7 ≤ 6

2. number prime factors 1 ≤ 3 Pass Pass number prime factors

1 ≤ 6
3. number of divisors 2 ≤ 3 Pass Pass number of divisors

5 ≤ 6
4. sum of digitsˆ2 25 ≤ 3 Fail N/A number of divisors

49 ≤ 6
5. number prime factorsˆ2 1 ≤ 3 Pass Fail number of divisors

1 ≤ 6
6. number of divisorsˆ2 4 ≤ 3 Fail N/A number of divisors

25 ≤ 6
7. sum of digits+ 6 ≤ 3 Fail N/A number of divisors

number prime factors 8 ≤ 6
8. sum of digits+ 7 ≤ 3 Fail N/A number of divisors

number of divisors 12 ≤ 6
9. number prime factors+ 3 ≤ 3 Pass Pass number prime factors+

number of divisors 6 ≤ 6 number of divisors

Table 1: Dalmatian Heuristic Example

proof, due to Fajtlowicz, follows from the characterization of graphs where
its radius equals its independence number [38].

3. For any graph G, R ≤ α, where R is the residue of G (this is the number of
zeros remaining after repeated application of the Havel-Hakimi procedure
to the degree sequence of the graph). This conjecture was originally proved
by Favaron, Mahéo and Saclé [39], and has since been reproved in the
literature more than once. One nice proof is due to Griggs and Kleitman
[40].

Pre-Dalmatian versions of Graffiti were also used to generate some interesting
number theory conjectures including, for instance, a formula for π(x).

We now record some examples of Graffiti’s Dalmatian heuristic conjec-
tures in various domains.

1. (Graph theory, WoW #747) If G is a connected graph then d̄ ≤ b
2 , where

b is the bipartite number, the order of a largest induced bipartite subgraph
[1]. Here the objects are connected graphs, and the average distance
and bipartite number are graph invariants. This conjecture generalizes
Chung’s theorem, mentioned earlier, and was recently proved by Hansen
and collaborators [41].

2. (Geometry, WoW #738) For a vertex v of a triangle, a ≤ s, where a is
the length of the line segment which bisects v and extends to the opposite
side and s is the length of the line segment from v to the midpoint of
the opposite side. Here the objects are triangle vertices, and a and s are
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triangle vertex invariants. It is reasonable to believe that useful geometric
knowledge awaits discovery. In fact, Coxeter has claimed that “geometry
is developing as fast as any other kind of mathematics” [42]. Nevertheless,
Graffiti’s geometry conjectures did not initiate any research. This can
be explained for various reasons; the most fundamental would be that
this conjecture does not directly advance any existing research question,
in particular, that there is neither any existing interest in upper bounds
for the length of a line segment that bisects a vertex and extends to the
opposite side, nor in lower bounds for the length of the line segment from
a vertex to the midpoint of the opposite side.

3. (Chemistry, WoW #895) For any fullerene, the separator of the fullerene
is no more than 1. Here the objects are fullerenes, and the separator is
a fullerene invariant. Fullerenes are a recently-discovered (1985) form of
carbon which include the 60-atom soccerball-shaped buckyball. Math-
ematically the structure of a fullerene is a trivalent planar graph with
pentagonal and hexagonal faces. There are, for instance, 1812 mathemat-
ically possible 60-atom fullerenes but only one that appears in experiment
[43]. Many other fullerenes with different atom counts have appeared in
experiment as either hollow structures like C60, endohedral structures, or
which form tubes (which are technically incomplete fullerenes).
The fullerene literature is now vast and includes a large number of papers
connecting invariants of their mathematical structure to physical invari-
ants. A mathematical fullerene invariant would include the difference
between the largest and second-largest eigenvalue (or separator) of the
symmetric matrix representing the bonding structure of its atoms. There
is some empirical evidence connecting large separator values with fullerene
stability [44, 45]. Graffiti’s conjecture was proved by Stevanović and
Caporossi [46].
It is worth noting that DeLaVina’s Graffiti.pc program also made some
conjectures related to the electronic structure of fullerenes; these are re-
ported in [47, pp.127-128].
It might be said that these fullerene conjectures are more about graph
theory than about chemistry. But graphs have been used to represent
molecules since the 19th century—in a way that advances both chemists’
understanding of their subject and their ability to predict chemical phe-
nomenon [43]. A prototypical example is the Coulson-Rushbrooke Pairing
Theorem [48] which can be found in both chemical and graph theoretic
language: it can be stated either in terms of π-electron energy levels for
alternant hydrocarbons or in terms of eigenvalues of bipartite graphs. In
books such as Fowler and Manolopoulos’ Atlas of Fullerenes, for instance,
what might be counted as “chemistry” and what might be counted as
“graph theory” can hardly be distinguished.

Fajtlowicz generated conjectures in domains other than graph theory largely
to demonstrate that the heuristics that he invented were not limited to use in
graph theory but were general (“domain independent”).
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4. The Program

An expression generating program (written in C for speed) is at the heart
of our program. In this context an expression is just a rooted, labeled binary
tree, that is, a rooted tree where each node has at most two children and each
node with, respectively, two, one or no children is labeled with, respectively, a
binary operator, a unary operator or an invariant. The expressions are generated
according to increasing complexity, which is defined as twice the number of
binary operators plus the number of unary operators. The program uses the
algorithm described in [49] and the numbers of generated structures have been
compared to the implementation in [50]. The generated expressions are tested
for being true for the provided invariant values (truth test) and can then be
handed over to an internal heuristic or can just be output. Internally we have
implemented two conjecture-making heuristics: the Dalmatian heuristic and—
for testing purposes—the heuristic described in [49].

Importantly, the results we describe in the following sections are repro-
ducible. Details about where to find the code and associated scripts are collected
in the final section of this paper.

The general approach to generating conjectures is as follows.

1. Produce a stream of inequalities with evaluable functions of the invariants
on each side of the inequality symbol. Some of these will pass the truth
and significance tests and be stored as conjectures.

2. Initialize an initial collection of objects. These can be as few as one.
3. Generate conjectures that are true for all stored objects and significant with

respect to these objects and the previously stored conjectures. Pass each
generated statement to the truth and significance tests. The program
needs a stopping condition. The best case is that, for each object, there
is at least one conjecture that gives the exact value for the object. In
this case there is no possibility of improving the current conjectures—in
the sense that no other conjectures can make better predictions about the
values of the existing objects—exact predictive power for all objects has
been achieved. In the case where this natural stopping condition is never
attained, another stopping condition will be required. One possibility is
to simply stop making conjectures after some hardcoded or user-specified
time.

4. Remove insignificant conjectures. After a conjecture is added to the store
of conjectures, it may be the case that another conjecture in the store
is no longer significant. If conjectured upper bounds (for example) for
an invariant α are being generated then a conjectured bound αi in the
conjectures store is significant, with respect to the stored objects, if and
only if there is an object O such that αi(O) < min{αj(O) : j 6= i},
that is, if and only if, there is an object O where the bound gives a
better predicted value for α(O) than any other conjectured bound does.
Insignificant conjectures are then removed.

5. Search for a counterexample to any of these conjectures. This can be
done by a human or automated in some way. In the case of number
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theory conjectures, the conjectures can easily be checked by testing the
conjectures for each integer from 1 up to an arbitrary large integer. In
the case of other objects, it will usually require some work to generate a
stream of distinct objects. In the case of graphs, McKay’s geng provides
a stream of examples from graphs with a single vertex up to any user-
specified number of vertices.

6. Add the counterexample, and repeat the conjecture generating and testing
process. The program can never make more conjectures than the number
of objects it has stored: the reason is exactly because each conjecture
in the conjectures store must give a better bound for at least one stored
object than any other conjecture does.
If there were, for instance, two stored objects and three conjectured bounds,
at least one of the conjectured bounds could not possibly be significant:
at best one of the conjectures could be the best bound for one of the ob-
jects and another for the second object—but the third conjecture would
have no possible remaining objects for which it could give the unique best
predicted value; this conjecture would have been removed as insignificant.

From the point of view of a user of our program, the required inputs of the
program are three:

1. A list of objects. The type is arbitrary, but they will usually all be of
the same type. To get meaningful results they will all represent the same
mathematical type of object. For instance, if you want to generate conjec-
tures about graphs, and c5, k5 and petersen are pre-defined graph ob-
jects, you would define objects = [c5, k5, petersen], and give objects

as a parameter to the program.

2. A list of invariants. These must be functions that are defined for the type
of objects in the objects list. For instance, if radius, size and order

are pre-defined real-valued graph functions, you would define invariants

= [radius, size, order] and give invariants as a parameter to the
program.

3. A positive integer listing the position of the invariant in the list of invariants
that you would like to conjecture bounds for from the list of invariants.
For instance if conjectures for the radius of a graph, the user would enter
0 in the list of parameters to the C program.

A concrete example of the use of the program may be found in the Appendix.
The outputs of the program are conjecture objects. These look like the state-
ments given in the examples in the subsequent sections of this paper. In fact
these conjectures are text representations of relationships between the invari-
ants themselves, and have further useful features encoded in their methods.
The program, by default, conjectures upper bounds for the chosen invariant.
There are many other non-required user options. In particular, one option gen-
erates lower bound conjectures. The operators used in the expression are not
user options. They are hard-coded in the program, since, unlike the functions
computing the invariants, these operators are also needed in the C program.
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Additional operators can be added by making additions to the code. A user can
exclude operators from being used. All conjectures reported here were made
with the same set of operators; no code changes were made.

5. Matrix Theory Examples

Neither author is a matrix theorist, which is one reason that we chose matrix
theory as a domain for experimentation. Sage has a number of built-in matrix
invariants. We implemented other invariants (that we found in [51]) as Sage
procedures; these function in the same way as Sage’s built-in invariants.

The objects are symmetric matrices (which thus have the property that all
of their eigenvalues are real). The invariants we used are the determinant,
nullity (number of zero eigenvalues), rank (number of non-zero eigenvalues),
trace (sum of the diagonal entries), nrows (number of rows of the matrix),
permanent, maximum eigenvalue, minimum eigenvalue, average eigenvalue,
number of distinct eigenvalues, spectral radius (the difference between
the largest and smallest eigenvalues), ratio min max absolute eigenvalues

(the ratio of the absolute values of the largest and smallest eigenvalues), sqrt abs

(the square root of the sum of the absolute values of the entries of the matrix),
frobenius norm (the square root of the sum of the squares of the entries of
the matrix), max column sum (the maximum of the sum of the entries of each
column), l inf norm (the maximum of the absolute value of the entries of the
matrix), and the separator (the difference between the largest and second
largest eigenvalues).

Bounds for the determinant of a matrix exist in the matrix theory literature.
For instance, Hadamard’s Inequality says that the determinant of a matrix is
no more than the product of the Euclidean lengths of the vectors defined by
its columns [51]. We presume that new bounds might also be of interest to
researchers. The following conjectures should be taken as an example of what
it is possible to do with the program. Matrix theorists can generate conjectured
bounds for any invariant that might advance their research.

The first round of conjectures for upper bounds for the determinant (det) of
a symmetric matrix are included in Table 2. In general, we expect counterexam-
ples of existing conjectures to be the best objects to input to a conjecture-making
program. We find these ourselves, from experts, or by systematically generating
matrices and testing whether each satisfied the conjecture or whether it was a
counterexample.

We also generated a round of conjectured lower bounds for the determinant
of a symmetric matrix. These can be found in Table 3. One further round of
upper and lower bound conjectures for the absolute value of the determinant is
included here. The upper bound conjectures are in Table 4. The lower bound
conjectures for the absolute value of the determinant of a matrix are in Table
5. The second conjecture is, of course, trivially true; nevertheless, at the point
that it was made it had to have given a better bound for the absolute value of
the determinant of some object than the bound in the first conjecture.
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1. det(x) ≤ permanent(x)
2. det(x) ≤ minimum eigenvalue(x)*trace(x)
3. det(x) ≤ maximum eigenvalue(x)*trace(x)
4. det(x) ≤ (rank(x) + 1)*spectral radius(x)
5. det(x) ≤ permanent(x)+max column sum(x)+1
6. det(x) ≤ maximum(rank(x), minimum eigenvalue(x)ˆ2)
7. det(x) ≤ maximum eigenvalue(x)*minimum(minimum eigenvalue(x), trace(x) + 1)
8. det(x) ≤ minimum eigenvalue(x)*minimum(trace(x), maximum eigenvalue(x))
9. det(x) ≤ maximum eigenvalue(x)ˆl inf norm(x) + separator(x)
10. det(x) ≤ trace(x)*average eigenvalue(x) - permanent(x)
11. det(x) ≤ (maximum eigenvalue(x)+1)*minimum eigenvalue(x)+frobenius norm(x)

Table 2: Upper bound conjectures for the determinant of a symmetric matrix.

1. det(x) ≥ minimum eigenvalue(x)*separator(x)
2. det(x) ≥ minimum(permanent(x), log(nullity(x))
3. det(x) ≥ -2*l inf norm(x)ˆnrows(x) + permanent(x)
4. det(x) ≥ -(separator(x) - 1)*frobenius norm(x) + permanent(x)
5. det(x) ≥ -l inf norm(x)*frobenius norm(x)
6. det(x) ≥ minimum(rank(x)-1, minimum eigenvalue(x)/nullity(x))
7. det(x) ≥ -4*l inf norm(x)ˆ2 + permanent(x)

Table 3: Lower bound conjectures for the determinant of a symmetric matrix.

1. abs det(x) ≤ log(nullity(x))ˆ2
2. abs det(x) ≤ frobenius norm(x)ˆ2
3. abs det(x) ≤ frobenius norm(x)ˆ2/number of distinct eigenvalues(x)
4. abs det(x) ≤ l inf norm(x)*frobenius norm(x)
5. abs det(x) ≤ sqrt(maximum eigenvalue(x)ˆ2)*frobenius norm(x)
6. abs det(x) ≤ 4*minimum eigenvalue(x)ˆ2 + average eigenvalue(x)
8. abs det(x) ≤ (spectral radius(x)ˆ2)ˆnumber of distinct eigenvalues(x)
9. abs det(x) ≤ spectral radius(x)ˆ2/ratio min max absolute eigenvalues(x) + 1
10. abs det(x) ≤ (maximum eigenvalue(x) - trace(x))*frobenius norm(x)
11. abs det(x) ≤ maximum(separator(x)ˆ2, maximum(permanent(x), l inf norm(x)))
12. abs det(x) ≤ -minimum eigenvalue(x)*spectral radius(x) + 1
13. abs det(x) ≤ 1/2*minimum eigenvalue(x)ˆ2*spectral radius(x)

Table 4: Upper bound conjectures for the absolute value of the determinant of a symmetric
matrix.

While one use for conjectured bounds for an invariant is as statements for
mathematical investigation, another possible use is for the heuristic estimation
of an invariant value. An estimate for the value of the determinant of a matrix
can be made by using either of the minimum of the values of the conjectured
upper bounds for the determinant, or the maximum of the values of the conjec-
tured lower bounds. While the determinant of a matrix is efficiently computable
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1. abs det(x) ≥ average eigenvalue(x) - 1
2. abs det(x) ≥ -rank(x)
3. abs det(x) ≥ l inf norm(x) - 1

Table 5: Lower bound conjectures for the absolute value of the determinant of a symmetric
matrix.

and an estimate may not be of any practical interest, there are other hard-to-
compute invariants—for example, the independence number of a graph—where
estimates generated from efficiently computable conjectured bounds may be of
interest. Another case where conjecture-driven invariant estimates might be
of use is in characterizing a class of objects. An example will be discussed in
connection with the game Chomp.

6. Number Theory Conjectures

We also chose number theory as a domain for experimentation because nei-
ther author has any special knowledge of this subject. We were aware of Gold-
bach’s Conjecture, interest in the distribution of the prime numbers and the
Prime Number Theorem, and the Riemann Hypothesis. While we did not
expect to make any contribution to this classical and well-researched area of
mathematics, we did think that our experiments could be of interest.

Goldbach, in a 1742 letter to Euler, conjectured that every even integer
(n > 2) is the sum of two primes [52]. The conjecture has been verified by com-
puter for all integers up to at least 4 · 1014 [53], and there are a large number of
partial results and continuing interest. Let Goldbach(x) be the number of repre-
sentations of x as a sum of two primes (so Goldbach(6)=1 and Goldbach(8)=2).
Clearly Goldbach’s Conjecture is true if and only if Goldbach(x)> 0 for even
x > 2. Thus, conjectured lower bounds for Goldbach(x) are of potential utility
to researchers: they could yield new avenues of investigation.

The objects here are even integers, and the invariants are integer invariants.
The first run of conjectures for Goldbach(x) involved the invariants prime pi

(the number of primes ≤ x), euler phi (the number of integers ≤ x which are
relatively prime to x), number (which returns the number x itself), digits10
(the number of digits in the base-10 representation of x), digits2 (the number
of digits in the base-2 representation of x), sigma (the sum of all divisors of
x), count divisors (the number of divisors of x), next prime (the smallest
prime greater than x), previous prime (the largest prime smaller than x), and
count quadratic residues (the number of quadratic residues of x). Most of
these invariants were included merely because they were built-in Sage functions.

Table 6 records the first round of Goldbach(x) conjectures. Conjecture 1
is curious as the bound goes to 0 as x gets large, and the bound is of little
predictive use. Nevertheless, the only object initially known to the program
was the integer 4, and for this object the lower bound exactly predicts the true
value of 1 for Goldbach(4). The second conjecture, which is much stronger
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in general, fails to predict Goldbach(4) and thus does not supersede the first
conjecture (the first conjecture is “stronger” for x=4). Both conjectures were
tested and were true for values of x up to 1,000,000. No counterexample was
found to the second conjecture and, thus, no further conjectures could be added
to the list of conjectures. The second conjecture is, in general, stronger than
Goldbach’s Conjecture and, if true, would imply it.

1. Goldbach(x) ≥ 1/digits10(x)
2. Goldbach(x) ≥ digits10(x) - 1

Table 6: Lower bound conjectures for Goldbach(x) (1st round).

In order to generate different conjectures, we removed digits10 as an in-
variant, and added some new invariants: mertens (the sum of the values of
the Möbius function for the integers no more than x [54, p. 36]), li (the
logarithmic integral with lower bound 0), zeta (the Riemann zeta function),
reciprocal prime sum (the sum of the reciprocals of the primes up to x),
max prime divisor (the largest prime divisor of x), and prime product (the
product of all primes no more than x). The second run of the program produced
the conjectures in Table 7.

1. Goldbach(x) ≥ euler phi(x)/prime pi(x)
2. Goldbach(x) ≥ -euler phi(x) + prime pi(x)
3. Goldbach(x) ≥ -count divisors(x) + digits2(x)
4. Goldbach(x) ≥ 1/2*sqrt(1/2)*sqrt(euler phi(x))
5. Goldbach(x) ≥ -1/2*mertens(x)

Table 7: Lower bound conjectures for Goldbach(x) (2nd round).

The distribution of the prime numbers has been of interest at least since the
time of Gauss, who famously conjectured that π(x), the number of primes no
more than x, is asymptotic to x

log(x) . This is now the Prime Number Theorem

(PNT), which was proved independently by Hadamard and Vallée-Poussin in
1896 [52]. prime pi(x) is the Sage implementation of π(x). There is an interest
in getting good explicit estimates for π(x). One bound due to Rosser [55], says
that, for x ≥ 55,

x

log x+ 2
< π(x) <

x

log x− 4

Other well-known bounds of Rosser and Schoenfeld can be found in [56].
Conjectures from the first run of the program are recorded in Tables 8 and

9. The invariants used in these are the same as those used in the first run of
conjectures for Goldbach(x). By the design of the program, we know that the
truth of these conjectures was tested for only 49 integers (all less than 440).
Conjectures 2 and 13 from Table 8 and Conjecture 26 from Table 9 seemed of
possible interest as they are similar in form to the PNT. We further tested the
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truth of these three conjectures for all integers no more than x = 1, 000, 000.
Conjecture 26 is false for x = 467. Conjectures 2 and 13 are true for all tested
values of x.

1. prime pi(x) ≤ previous prime(x)
2. prime pi(x) ≤ (number(x) - 1)/digits10(x)
3. prime pi(x) ≤ 1/2*sigma(x)
4. prime pi(x) ≤ digits10(x) + euler phi(x)
5. prime pi(x) ≤ maximum(count quadratic residues(x), euler phi(x) + 1)
6. prime pi(x) ≤ maximum(euler phi(x), 1/2*number(x))
7. prime pi(x) ≤ digits2(x)ˆ2 + digits10(x)
8. prime pi(x) ≤ count quadratic residues(x) + 1/2*euler phi(x) - 1
9. prime pi(x) ≤ (next prime(x) + number(x) - 1)/digits2(x)
10. prime pi(x) ≤ 2*sigma(x)/digits2(x)
11. prime pi(x) ≤ maximum(euler phi(x), 2*count divisors(x))
12. prime pi(x) ≤ 2*sqrt(previous prime(x)) + count quadratic residues(x)
13. prime pi(x) ≤ (previous prime(x) + euler phi(x))/log(number(x))
14. prime pi(x) ≤ (digits10(x)ˆ2 + 1)ˆ2
15. prime pi(x) ≤ 4*count quadratic residues(x) - 2*digits2(x)
16. prime pi(x) ≤ maximum(1/2*previous prime(x), digits10(x) + digits2(x))
17. prime pi(x) ≤ next prime(x)/(log(number(x)) - 1)
18. prime pi(x) ≤ sigma(x)*count divisors(x)/digits2(x)
19. prime pi(x) ≤ 2*(number(x) + 1)/digits2(x)
20. prime pi(x) ≤ 1/2*digits2(x) + 1/4*next prime(x)
21. prime pi(x) ≤ maximum(digits2(x)ˆ2, euler phi(x) - count divisors(x))
22. prime pi(x) ≤ maximum(euler phi(x) - 1, 2*count divisors(x))
23. prime pi(x) ≤ 2*(next prime(x) - 1)/digits2(x)
24. prime pi(x) ≤ log(10)*previous prime(x)/(log(digits10(x))*digits2(x))
25. prime pi(x) ≤ 2*count quadratic residues(x) + digits10(x) + 2

Table 8: Upper bound conjectures for π(x) (1st round).

Lastly, we generated some conjectures that could be related to the Rie-
mann Hypothesis. The best-known version of the conjecture, and the one posed
by Riemann, is a claim about the zeros of the Riemann zeta function. Von
Koch showed that the Riemann hypothesis is equivalent to the statement that
|π(x) − Li(x)| ≤

√
x ln(x) for x ≥ 2.01, where Li(x) =

∫ x

2
1

ln(t)dt is the (offset)

logarithmic integral (so Li(x) = li(x)−li(2)) [54, p. 37]. Thus we expect bounds
for |π(x)− Li(x)| to be of interest to researchers.

In our initial run, we encountered the Sorcerer’s Apprentice Problem. Start-
ing with a single (integer) object the program generated conjectures, found
counterexamples, added these to the store of objects, and repeated the process.
In making repeated rounds, the program soon produced 200 counterexamples
and 71 corresponding conjectures and was stopped (the first 25 conjectures are
in Table 10). The list had become too long and of less and less potential interest:
experts can’t be expected to consider 71 conjectures with as much interest as
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26. prime pi(x) ≤ sigma(x)/(log(number(x)) - 1)
27. prime pi(x) ≤ log(digits2(x) + 1)*count quadratic residues(x)
28. prime pi(x) ≤ previous prime(x)/log(1/2*count quadratic residues(x))
29. prime pi(x) ≤ 1/4*count divisors(x)ˆ2 + count quadratic residues(x)
30. prime pi(x) ≤ sqrt(1/count divisors(x))*next prime(x)
31. prime pi(x) ≤ (log(count divisors(x))/log(10) + 1)*count quadratic residues(x)
32. prime pi(x) ≤ next prime(x)/(digits10(x) + 1) + 1
33. prime pi(x) ≤ 4*sqrt(previous prime(x)) + 1
34. prime pi(x) ≤ (euler phi(x) + number(x))/log(next prime(x))
35. prime pi(x) ≤ (sigma(x) + digits2(x))/(digits10(x) + 1)
36. prime pi(x) ≤ -previous prime(x) + 1/2*count quadratic residues(x) + sigma(x)
37. prime pi(x) ≤ count divisors(x)ˆdigits10(x) + 1/2*count quadratic residues(x)
38. prime pi(x) ≤ sigma(x)*count divisors(x)/digits2(x)
39. prime pi(x) ≤ 1/2*count quadratic residues(x) - euler phi(x) + next prime(x)
40. prime pi(x) ≤ digits2(x)ˆ2 - previous prime(x) + next prime(x)
41. prime pi(x) ≤ (previous prime(x) + digits2(x))/sqrt(count divisors(x))
42. prime pi(x) ≤ maximum(2*digits2(x), previous prime(x) - count quadratic residues(x))
43. prime pi(x) ≤ maximum(euler phi(x) - 1, count quadratic residues(x) + digits2(x))
44. prime pi(x) ≤ digits2(x)*sqrt(count divisors(x)) + count quadratic residues(x)
45. prime pi(x) ≤ log(previous prime(x))*count divisors(x)/log(10) +

count quadratic residues(x)

46. prime pi(x) ≤ maximum(count quadratic residues(x), 1/2*sigma(x)/digits10(x))
47. prime pi(x) ≤ sqrt(count divisors(x))ˆdigits10(x) + count quadratic residues(x)
48. prime pi(x) ≤ -(digits10(x) - 2*next prime(x))/digits2(x)
49. prime pi(x) ≤ -(sqrt(digits10(x)) - count divisors(x))*number(x)

Table 9: Upper bound conjectures for π(x) (1st round).

they might have for a mere handful of conjectures.
The conjectures that we really wanted were ones that would be of possible use

in proving the Riemann Hypothesis. In light of this, we filtered the conjectured
bounds for the ones that were no more than

√
x ln(x) for all integers x between

3 and 1, 000, 000. The produced conjectures satisfying this additional condition
are in Table 11.

7. Bounds for the Graph Theoretic Domination Number

Both authors are graph theorists. Our interests and research specialties
include independence number theory, graph generation, chemical graph theory,
and algorithm design; neither of us is an expert in the theory of dominating sets
and domination number of a graph.

A dominating set in a graph is a set D such that every vertex of the graph
which is not in D is adjacent to at least one vertex in D; the domination number
of a graph is the cardinality of a minimum dominating set [57]. Computing the
domination number of a graph is intractable (NP-hard) and currently impossible
for general graphs of even moderate size. Conjectured bounds for the domination
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1. |π(x)− Li(x)| ≤ sqrt(number(x))/reciprocal prime sum(x) - 1
2. |π(x)− Li(x)| ≤ reciprocal prime sum(x)**digits10(x) + 1
3. |π(x)− Li(x)| ≤ sqrt(number(x) + 1) + mertens(x)
4. |π(x)− Li(x)| ≤ sqrt(sigma(x)/(count divisors(x) + 1))
5. |π(x)− Li(x)| ≤ log(next prime(x))*sqrt(digits2(x))/log(10)
6. |π(x)− Li(x)| ≤ mertens(x)/digits10(x) + digits2(x)
7. |π(x)− Li(x)| ≤ (digits2(x)/digits10(x))**reciprocal prime sum(x)
8. |π(x)− Li(x)| ≤ sqrt(sigma(x)) + mertens(x)
9. |π(x)− Li(x)| ≤ reciprocal prime sum(x)**2 + log(count quadratic residues(x))
10. |π(x)− Li(x)| ≤ -euler phi(x)/(reciprocal prime sum(x) - digits2(x))
11. |π(x)− Li(x)| ≤ number(x)/log(next prime(x))**2
12. |π(x)− Li(x)| ≤ sqrt(count quadratic residues(x)*sqrt(reciprocal prime sum(x)))
13. |π(x)− Li(x)| ≤ sqrt(1/2)*sqrt(sigma(x)) - mertens(x)
14. |π(x)− Li(x)| ≤ (log(number(x))/log(10))**reciprocal prime sum(x) + 1
15. |π(x)− Li(x)| ≤ sqrt(sigma(x)/digits10(x))*sqrt(1/2)
16. |π(x)− Li(x)| ≤ 1/2*max(max prime divisor(x), 1/2*euler phi(x))
17. |π(x)− Li(x)| ≤ sqrt(euler phi(x)) - log(max prime divisor(x))/log(10)
18. |π(x)− Li(x)| ≤ -log(2*count divisors(x))/log(10) + digits2(x)
19. |π(x)− Li(x)| ≤ max(digits10(x)**2, 1/2*count divisors(x))
20. |π(x)− Li(x)| ≤ sigma(x)**(sqrt(reciprocal prime sum(x)) - 1)
21. |π(x)− Li(x)| ≤ 1/2*sqrt(euler phi(x)) + 1/2*max prime divisor(x)
22. |π(x)− Li(x)| ≤ sqrt(sigma(x)) + mertens(x)
23. |π(x)− Li(x)| ≤ sqrt(1/2*euler phi(x) + digits2(x))
24. |π(x)− Li(x)| ≤ max(count divisors(x), sqrt(count quadratic residues(x))) - 1
25. |π(x)− Li(x)| ≤ -1/2*log(prime product(x)) + 1/2*sigma(x)

Table 10: Upper bound conjectures for |π(x)− Li(x)|.

1. |π(x)− Li(x)| ≤ -digits10(x)ˆ(1/4) + digits2(x)
2. |π(x)− Li(x)| ≤ sqrt(number(x)) - log(euler phi(x))
3. |π(x)− Li(x)| ≤ maximum(digits10(x), 1/2*sqrt(previous prime(x)))

Table 11: Upper bound conjectures for |π(x) − Li(x)| that improve on the Von Koch bound
for x ≤ 1, 000, 000.

number are of theoretical interest—bounds which are functions of efficiently
computable invariants are also of practical interest—these can lead to speed up
of domination number computations.

The objects are connected graphs. The invariants we started with included
domination number, matching number, annihilation number, girth, radius,
fractional independence number, average distance, diameter, order, size,
szeged index, wiener index, average degree, min degree, max degree, and
residue. Many of these are standard graph theoretic invariants that can be
found in introductory texts such as [58]. These invariants were either built-in
Sage functions or were coded by us as Sage procedures. For acyclic graphs,
girth was set to infinity. The Szeged and Wiener indices are of special interest
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in chemical graph theory. The fractional independence number is the optimum
solution to the relaxation of the independence number linear program (and thus
an upper bound for the independence number). The annihilation number is a de-
gree sequence upper bound for the independence number introduced by Pepper
[59, 60], and the residue is a degree sequence lower bound for the independence
number introduced by Fajtlowicz [39].

The three invariants listed after domination number are known upper bounds
for the domination number and were eventually removed in order to try to gen-
erate better upper bound conjectures. Manual removal of invariants in this
way is no longer required: the inclusion and use of known bounds would have
precluded the initial production of these conjectures.

We used McKay’s program geng [61] to generate all graphs up to some
(small) specified order in a loop to automatedly find counterexamples to gen-
erated conjectures and, thus, automatedly improve the produced conjectures.
In our run generating upper bound conjectures for the domination number,
the program ended up with four examples (found by this automated search for
counterexamples) and the conjecture that the domination number of a graph is
no more than its matching number. The conjecture exactly predicted the true
value of the domination number of these four graphs—and, hence, the program
stopped. This is a known (and not difficult to prove) fact about the domination
number. Again, if existing theory had been included, this conjecture could not
have been made.

In the next run, we removed matching number from the list of invariants and
the program generated the three conjectures in Table 12. The first two we knew
to be true. The third is false: Ryan Pepper found a 24 vertex counterexample;
this is the graph in Figure 1.

1. domination number(x) ≤ fractional independence number(x)
2. domination number(x) ≤ annihilation number(x)
3. domination number(x) ≤ residue(x) + 1

Table 12: Upper bound conjectures for the domination number of a graph.

After adding Pepper’s counterexample, we generated another run of upper
bound domination conjectures. These are in Table 13. Stephen Hedetniemi,
a co-author of the standard reference on domination [57], points out that the
second of these conjectures is false for K1 and K2—we had only been including
graphs of order n ≥ 3 in our automated counterexample search—and trivially
true for graphs or order n ≥ 3. The truth of Conjecture 7 follows from a well-
known result. He also provided counterexamples to Conjectures 3, 4, 5, and 11.
The graph in Fig. 2 disproves these: it has 201 vertices, domination number of
100, girth of 3, maximum degree of 100, average distance of 2.97, diameter of
4, and radius of 2.

We added Hedetniemi’s counterexamples as objects to the program and gen-
erated a second round of conjectures for upper bounds for the domination num-
ber of a graph; the results are in Table 14. Several of these conjectures reap-
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Figure 1: A counterexample to Conjecture 3 in Table 12.

1. domination number(x) ≤ 1/2*order(x)
2. domination number(x) ≤ size(x) - 1
3. domination number(x) ≤ 2*diameter(x) - 1
4. domination number(x) ≤ diameter(x)ˆ2
5. domination number(x) ≤ girth(x)ˆ2
6. domination number(x) ≤ residue(x) + 2
7. domination number(x) ≤ -average degree(x) + order(x)
8. domination number(x) ≤ max(radius(x), average distance(x)ˆgirth(x))
9. domination number(x) ≤ 2*residue(x) - 1
10. domination number(x) ≤ min degree(x) + residue(x)
11 domination number(x) ≤ 2*diameter(x) - radius(x) + 2
12. domination number(x) ≤ (min degree(x) + 1)ˆ(residue(x) - 1)
13. domination number(x) ≤ max(residue(x), -girth(x) + order(x))
14. domination number(x) ≤ max(diameter(x), order(x) - 2*radius(x))

Table 13: Upper bound conjectures for the domination number of a graph (1st run).

peared in the second round. All of these conjectures other than the first remain
open.

Finally, we generated a round of conjectured lower bounds for the domination
number of a graph. The results are in Table 15. The first conjecture is false:
Pepper points out that large enough cycles are counterexamples. The second and
third conjectures are curious as they are trivially true; but, at some point in the
conjecture-making process, there must have been graphs for which these bounds
gave a larger predicted domination number than the previously conjectured
bounds.
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Figure 2: A counterexample to several conjectures in Table 13.

1. domination number(x) ≤ 1/2*order(x)
2. domination number(x) ≤ size(x) - 1
3. domination number(x) ≤ 2*max degree(x) + 2
4. domination number(x) ≤ residue(x)ˆ2
5. domination number(x) ≤ order(x) - max degree(x)
6. domination number(x) ≤ diameter(x) + max degree(x) - 1
7. domination number(x) ≤ 2*residue(x) - 1
8. domination number(x) ≤ max(residue(x), diameter(x) + 1)
9. domination number(x) ≤ max(max degree(x), 2*diameter(x) - min degree(x))

Table 14: Upper bound conjectures for the domination number of a graph (2nd run).

1. domination number(x) ≥ radius(x) - 1
2. domination number(x) ≥ 1/average distance(x)
3. domination number(x) ≥ 1/radius(x)

Table 15: Lower bound conjectures for the domination number of a graph (1st run).

8. Lower Bounds for the Graph-theoretic Independence Number

The independence number of a graph (also called the stability number, vertex
packing number and node packing number) is the largest number of mutually
pairwise non-adjacent vertices in the graph. It is NP-hard to compute [62], of
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both practical and theoretical interest, and has a large literature. There are at
least 50 published bounds for this graph invariant. In this case our goal was
to generate conjectured lower bounds for the independence number which are
not consequences of existing (proved) lower bounds. It is practically impossible
to compute the independence number of arbitrary graphs of even moderate size
(say, with 2000 vertices6).

In this case the authors are specialists. The first author has written papers
on the theory of maximum independent sets, the computation of this number,
and applications [63, 64, 60, 65, 45]. But a similar investigation could have been
carried out by a non-specialist who had the collected published facts that we
make use of. Special use was made of this knowledge only to find counterex-
amples to conjectures; if finding counterexamples could be automated then this
investigation could have been done entirely without expert knowledge.

In the previously reported experiments, no existing bounds were included in
the program—and, thus, the program could make “rediscoveries.” Mazur later
suggested including known bounds—theoretical knowledge—in the program to
keep the program from making conjectures that were implied by existing theory.
This was easy to implement: the conjectures store can simple be seeded with
these known bounds. In this way, the program only produces conjectures that
are mathematically significant in a precise sense: they will give better invariant
value predictions for some objects than any known bounds will. The known
bounds that we included in these experiments are the following: the aforemen-
tioned radius and residue, Fajtlowicz’s max-even-minus-min-horizontal bound
(the maximum, over all vertices v, of the number of vertices minus the num-
ber of edges for the subgraph induced by the vertices at even distance from v),
together with a bound due to Angel, Campigotto and Laforest [66].

The upper bound theory for the independence number is surprisingly good:
there is an efficiently computable upper bound for the independence number of
a graph which can give very good estimates for the true value of this invariant:
this is the famous Lovász number ϑ of a graph. Lovász’s original definition was
in terms of orthogonal representations of the graph [67]. There are now known
to be several equivalent definitions [68]. All these definitions are all relatively
technical and not worth detailing here. One definition is as the optimal value
of a semidefinite program—and solving semidefinite programs is something that
can be done efficiently [69]. We have computed both the Lovász number and
the independence number for all graphs with up to 10 vertices (there are more
than 12 million simple graphs with 10 vertices [70]). For all of these graphs, the
floor of the Lovász number equals the independence number; that is, the Lovász
number exactly predicts the independence number.

No similar lower bound exists. For small graphs the residue can be very
good. But, as the order of the graph increases, the residue becomes less and
less good. Our goal was to find new lower bounds that would advance this

6Neil Sloan maintains a list of some of these that have been beyond the abilities of experts
at: neilsloane.com/doc/graphs.html
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theory. While it is unlikely that there is any single lower bound that will be as
predictive as the Lovász number upper bound, it is possible that, with enough
lower bounds, at least one of them may be predictive for a given graph. We
conducted two investigations, the first was for small “hard” graphs, and the
second was for random graphs.

In our first investigation we used only independence irreducible graphs [64]
as examples for the program. These graphs admit various definitions. The
significance of these graphs is that the calculation of the independence number
of any graph can be efficiently reduced to the calculation of the independence
number of an independence irreducible subgraph. In this sense these are the
“hardest” graphs for independence number computations.

Here we included all of the efficiently computable graph invariants that are
either built-in to Sage or that we have coded (as Sage procedures). So this
investigation did not include domination number but did include, for instance,
lovasz theta. The complete list is: independence number, card center,
Graph.connected components number, cycle space dimension, card periphery,
Graph.density, Graph.average distance, Graph.diameter, Graph.radius,
Graph.girth, Graph.order, Graph.size, Graph.szeged index, min degree,
Graph.wiener index, max degree, Graph.average degree, matching number,
residue, annihilation number, lovasz theta, and cvetkovic.

Here we do not report all the conjectures made by the program but only those
that attracted the first author due either to their simplicity or their relation to
known bounds. The first of these is the conjecture that, for independence irre-
ducible graphs, independence number ≥ min(girth-1, cvetkovic). cvetkovic
is the Cvetković bound, the minimum of the number of non-negative and non-
positive eigenvalues of the graph. It is an upper bound of the independence
number. The fact that it showed up in a simple formula for a conjectured lower
bound is surprising. The conjecture was verified for all graphs of up to ten
vertices. But there is a counterexample with eleven vertices: this is the graph
in Figure 3.

Figure 3: Graph(”J?AAD?W[?[?”)
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The next conjecture is that independence number ≥ 2*matching number-
2*maximum degree for all independence irreducible graphs. This conjecture was
also verified for all graphs with up to ten vertices. But here there is a coun-
terexample with fourteen vertices, namely the graph formed by putting a single
edge from any vertex in one 7-cycle (a cycle graph on seven vertices) to any
vertex on a second 7-cycle.

The two conjectures in Table 16, which were also verified for all graphs with
up to ten vertices, remain open.

1. independence number(x) ≥ density(x) + lovasz theta(x) - min degree(x) + 1
2. independence number(x) ≥ card periphery(x) - max degree(x) - residue(x)

Table 16: Lower bound conjectures for the independence number of a graph.

In the previous run of the program, potential counterexamples were searched
for by systematically generating all small graphs using McKay’s geng. Coun-
terexamples were then added as objects to the program, and the process was
iterated. In the next run of the program we did not use geng. We wanted to
use larger graphs as potential counterexamples and here systematic generation
is impossible: there are, for instance, approximately 1065 graphs of order 25.
We chose random selections of graphs from orders 10 to 25 in our search for
counterexamples. These were generated, essentially, by choosing the order of
the graph and, for each pair of vertices, flipping a coin to determine whether or
not to include an edge between the vertices (the theory of random graphs is large
and dates back to the 1950s [71]). Three of these conjectures are in Table 17.
They should be interpreted as being true for random graphs. The first and third

1. independence number(x) ≥ min{girth(x), matching number(x)-1}
2. independence number(x) ≥ periphery(x)-2*maximum degree(x)
3. independence number(x) ≥ min{edges(x)-order(x)+1,diameter(x)}

Table 17: Lower bound conjectures for the independence number of a graph.

conjectures in Table 17 are interesting because they, in some sense, generalize
the radius lower bound for the independence number of a graph (mentioned
earlier, following a conjecture of Graffiti). The second conjecture involves
the periphery, which is the cardinality of the set of vertices of maximum ec-
centricity.

9. Chomp

A conjecture-making program can be used in the design of a game-playing
program. We describe how this might be done, and an initial experiment, for the
game of Chomp. Chomp is an impartial two-player perfect information game
that terminates in a finite number of moves; thus it has a winning strategy
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[72]. The game is played on a rectangular board which is, at the beginning,
completely covered with “cookies”. The upper left corner of the board contains
a “poisoned cookie”. Which ever player eats the poison cookie loses. A move
consists of a player choosing a square with a cookie on it, removing that cookie
and all cookies to the right of it or below it and any other cookie which is both
to the right and below it.

There are board positions from which, if the next player to move N played
perfectly, N would be guaranteed to win, regardless of what future moves the
previous player to play P makes. The winning strategy for N is known in special
cases, for instance, if the cookies form an “L”, or if there are only one or two
rows of cookies. A winning strategy for N in the general case is not known.
Given a board position, what is the best move for N to make in order to secure
an eventual victory? A position may be theoretically “solvable” despite the fact
that no human (nor machine) knows the solution—it is beyond current human
and machine powers. N ’s goal is to get from the current board position to one
that is known to be solvable.

Our idea is use known winning positions (where N has a known winning
strategy) as objects, and generate conjectures about these positions to use in
the choice of a move. For Chomp the game board can easily be represented as a
0-1 matrix with 1s in the entries representing squares of the board with cookies
on them. Various invariants can then be defined. We defined only invariants
that are Chomp-specific; that is, we did not use any matrix invariants such as
the largest singular value, that did not have any obvious interpretation in terms
of game play. “Chomp conjectures” involving only natural Chomp invariants
might be provable—in terms of game strategy—and initiate a Chomp Theory.
Our ideal Chomp Theory would consist of some number of invariant-relation
statements that would all be satisfied for any winning position and which would
not all be satisfied for a losing position.

The invariants we used are: cookie rank (the number of different rows with
a different number of 1s, equals the matrix rank), duplicate columns (the
number of duplicated columns), duplicate rows (the number of duplicated
rows), first two columns difference (the difference between the number of
1s in the first and second columns), first two rows difference (the difference
between the number of 1s in the first and second rows), possible cookies (the
initial number of 1s at the beginning of the game), number of cookies (the
number of 1s in the matrix), L difference (difference between the length of the
longest row and longest column), diagonal cookies (the number of 1s on the
diagonal of the matrix), max column cookies (the number of 1s in the leftmost
column of the matrix), max row cookies (the number of 1s in the topmost row
of the matrix), and inside (the number of 1s not in the leftmost column or
topmost row).

The objects that we used were 26 mostly simple winning game positions
derived from Gale’s original paper. We then generated conjectured upper and
lower bounds for each of the 12 invariants. A possible game position would either
satisfy these “winning position conjectures” or it would not: if every conjecture
were true then any winning position would satisfy all of the conjectures. At
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any moment in the game N will have a number of possible moves. The move
heuristic that we used was to choose the move yielding a board position that
satisfied the fewest number of the conjectures—on the theory that this move
would yield a position that was least likely to be a winning position for P . We
did not implement any look-ahead in our move heuristic.

A sample of the generated conjectures—all the upper bound conjectures
for the number of cookies on the diagonal of the game board—are recorded in
Table 18. To the extent that all of the conjectures are true, it may be that they

1. diagonal cookies(x) ≤ possible cookies(x)
2. diagonal cookies(x) ≤ max column cookies(x)
3. diagonal cookies(x) ≤ L difference(x) + 1
4. diagonal cookies(x) ≤ duplicate rows(x)
5. diagonal cookies(x) ≤ cookie rank(x) - 1
6. diagonal cookies(x) ≤ (1/cookie rank(x))
7. diagonal cookies(x) ≤ sqrt(L difference(x))
8. diagonal cookies(x) ≤ min(duplicate columns(x), max column cookies(x))
9. diagonal cookies(x) ≤ cookie rank(x) - first two columns difference(x)
10. diagonal cookies(x) ≤ cookie rank(x) - first two rows difference(x)
11. diagonal cookies(x) ≤ -cookie rank(x) + first two rows difference(x)

Table 18: Upper bound conjectures for the number of cookies on the diagonal of a game
position.

completely characterize winning game positions. In this case a player, human or
robot, basing their moves on these conjectures can play a maximally intelligent
game of Chomp.

10. Future Work

These preliminary results show that a conjecture-making program based on
the Dalmatian heuristic can be of use to researchers in their investigations of
bounds of real number invariants of objects. Our example of a conjecture-based
Chomp playing program how an automated conjecture-making functionality
might be used in the design of other intelligent behaviors.

Researchers who use our program may be able to improve their results in
various ways. Some possibilities include the following.

1. Add more invariants. This is not an issue in the design of our program
but, rather, in its use. We used relatively small numbers of invariants.
In contrast, DeLaVina’s Graffiti.pc included more than 100 invariants
when it was originally developed in 2001 [2], and which now has many
more.

2. Vary the counterexample-finding process. Instead of systematically gen-
erating all possible small counterexamples, or choosing random examples
of various size objects, it might be useful to choose examples that are
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extremal with respect to one of the invariants in the formula for a con-
jectured bound. Hansen and Caporossi’s AGX, for instance, is able to
generate these examples.

3. Add existing bounds (ones proved in the literature) and conjectures to the
program. In this way, the program could only produce conjectures that for
which there is at least one example where the produced conjecture gives
a better bound than any known theorem or conjecture. In Fajtlowicz’s
terms, the produced conjectures would be “informative” or “significant”
compared to existing theory. We did not do this in our initial experiments
but did use this idea successfully for our independence number conjectures.

4. Use a property-relations conjecture-making program. Generated coun-
terexamples may have certain properties. If these commonalities can be
identified, it may be possible to refine many conjectures which are “almost
true”. The generalization of the Dalmatian heuristic to the design of a
program that makes conjectures about relations of properties of objects is
explained below.

Lastly we discuss an idea for extending the automation of invariant-relation
conjectures to the automation of property-relation conjectures. The Dalmatian
heuristic, as described, is used to make conjectures about relations between the
invariants of an object. Conjectures between the properties of an object may
also be of interest. A property is a condition that an object does or does not
have. An integer is perfect if it equals the sum of its proper divisors. “Being
perfect” is an integer property: any given integer does or does not have this
property. (“Being wet” is not an integer property.) An example of a property-
relation conjecture is: If an integer is perfect then it is even. This can also be
stated as “Being perfect is a sufficient condition for being even” or, “Being even
is a necessary condition for being perfect.”

The analogues of upper or lower bounds for an invariant of interest are
necessary or sufficient conditions for a property of interest. Let P be the prop-
erty that an integer is perfect. If sufficient conditions for an integer to have
this property are desired, a conjecture-making program would need to produce
property-expressions Q1, Q2, . . ., and statements of the form, “If an integer has
property Qi then it has property P” (or, more simply, “If Qi then P”). If neces-
sary conditions are desired then the program would need to produce statements
of the form, “If an integer has property P then it has property Qi.”

Let O1, . . . ,On be examples of objects of a given type. Let Q1, . . . , Qk be
properties. And let P be a property for which conjectured necessary or sufficient
conditions are of interest. If the objects are the integers G1, . . . , Gn, and P is
the property “is perfect” then P (Gi) would be True if Gi is perfect and False if
Gi is not perfect.

An unlimited stream of boolean functions of the invariants can then be
formed: Q1∧Q2, ¬Q1, Q1∨Q3, (Q2∧Q4)∨Q3, etc. This stream can be produced
in any way at all. These expressions can then be used to form conjectured nec-
essary or sufficient conditions for P . If we are interested in necessary conditions
for P , say, we can form the statements P ⇒ Q1 ∧Q2, P ⇒ ¬Q1, P ⇒ Q1 ∨Q3,
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P ⇒ (Q2 ∧ Q4) ∨ Q3, etc. These statements can be interpreted as being true
for all the objects of the given type. That is, the statement P ⇒ Q1 ∧Q2 can
be interpreted as, “For every object O, P (O) ⇒ Q1(O) ∧ Q2(O).” A conjec-
tured necessary condition Q is only added to the database of conjectures if the
property passes the following two tests.

1. (Truth test). The candidate conjecture P ⇒ Q is true for all of the stored
objects O1, . . . ,On, and

2. (Significance test.) There is an objectO ∈ {O1, . . . ,On} such that ¬Q(O)∧
(Q1(O) ∧ . . . ∧Qr(O)), where Q1, . . . , Qr are the currently stored conjec-
tures. That is, the candidate conjecture would give a better necessary
condition for P (O) than any previously conjectured necessary condition.

If we are interested in sufficient conditions for P we can form the statements
Q1 ∧ Q2 ⇒ P , ¬Q1 ⇒ P , Q1 ∨ Q3 ⇒ P , (Q2 ∧ Q4) ∨ Q3 ⇒ P , etc. These
statements can be interpreted as being true for all the objects of the given type.
That is, the statement Q1∧Q2 ⇒ P can be interpreted as, “For every object O,
Q1(O) ∧ Q2(O) ⇒ P (O).” A conjectured sufficient condition Q is only added
to the database of conjectures if the property passes the Truth and Significance
tests. In this case the significance test would be as follows: Check that there
is an object O ∈ {O1, . . . ,On} such that Q(O) ∧ ¬(Q1(O) ∧ . . . ∧ Qr(O)),
where Q1, . . . , Qr are the currently stored conjectures. That is, the candidate
conjecture would give a better sufficient condition for P (O) than any previously
conjectured sufficient condition.

Another way to think about property-relation conjectures is in terms of the
sets of objects that have some property. Let P be the set of objects that have
property P . Necessary conditions for membership in P define a super-class N
of P. What is wanted are conjectures that make this super-class smaller and
smaller. So a conjectured necessary condition Q is informative if, together with
the previous conjectures, it defines a smaller super-class N ′ with P ⊆ N ′ ⊂ N .

Similarly, sufficient conditions for membership in P define a sub-class S of
P. What is wanted here are conjectures that make this sub-class larger and
larger. So a conjectured sufficient condition Q is informative if, together with
the previous conjectures, it defines a larger sub-class S ′ with S ⊂ S ′ ⊆ P.

The first author described a Dalmatian-style necessary condition heuristic
in [13]. DeLaVina and Waller described and implemented a Dalmatian-style
sufficient condition heuristic in [73], that they call Sophie. The Sophie version
of Graffiti.pc has produced some useful conjectures including the following.

1. (WoW2 #196a) For any connected graph G, if α(G) = r(G) then G has a
Hamiltonian path [73], where α is the independence number of the graph,
and r is the radius. A Hamiltonian path in a graph is a path which visits
each vertex exactly once. Here the objects are graphs, and the properties
are “has equal independence number and radius” and “has a Hamiltonian
path”. Sufficient conditions for a graph having a Hamiltonian path have
been of continuing interest [74, 75].
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2. (WoW2 #329) For any graph G, G is König-Egerváry if and only if
α(G) = αc(G), where α is the independence number of the graph, and
αc is the critical independence number of the graph. A graph is König-
Egerváry if the independence number of the graph plus the matching
number of the graph equals the number of vertices of the graph. These
graphs are a generalization of bipartite graphs (the König-Egerváry Theo-
rem guarantees that bipartite graphs have this property [58]). It has been
of continuing interest to find new characterizations for this class of graphs
[76, 77, 78, 79]. Sophie’s conjecture was proved in [64].

We conclude this section by emphasizing that the Dalmatian heuristic can
be applied to the production of non-mathematical conjectures: there is no re-
quirement that the object-types be mathematical. They can just as well be
physical. The only requirement is that the object-types have real number in-
variants. Application of the Dalmatian heuristic in a given situation requires
that the problem can be represented as a question about the value of a numer-
ical invariant of an “object”. The answer will be found in terms of relations of
other numerical invariants of the object. So once the object, main invariant,
and other invariants are specified, and one or more data examples are provided,
conjectured bounds for the main invariant can be generated; and, assuming we
have the values of the other invariants, these conjectures can be used to make
predictions about the value of the main invariant. In a sequel to this paper we
plan to discuss our ideas for using automated conjecture-making programs in
the design of conscious robots.

We believe that automated conjecture-making of invariant and property re-
lations have even broader applications than we have described here, and that
researchers will experiment with conjecture-making programs in a variety of
settings.

11. Discussion

Finally we discuss some observations from our use of the program.
1. Successful conjecture-making programs do not require domain-specific

heuristics. The description of the Dalmatian heuristic does not refer to any
particular branch of mathematics, or even to mathematical object-types. We
have demonstrated its general utility in graph theory, number theory and matrix
theory, and in characterizing game positions. Graffiti’s post-Dalmatian con-
jectures in geometry, chemistry, and graph theory provided evidence of domain-
independence; we have provided further evidence. It has been claimed that
different domains require different heuristics. The authors specifically gener-
ated conjectures for mathematical areas in which we had no expert knowledge.
We paged through relevant books looking for invariants and to try to determine
invariants for which experts would be interested in conjectured bounds.

Knowledge of existing theorems can improve the conjectures produced by
a conjecture-making program. This is knowledge that experts would have—
but not “expert knowledge”—anyone can page through the relevant texts and
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papers to find these theorems. Knowledge of all examples of objects that have
appeared in the literature of a domain would also improve the conjectures.
For the program described here, it would guarantee the truth of any produced
conjecture with respect to at least these objects. It would also be useful to have
an an “intelligent” counterexample-finder. We do not know of one—or whether
these would require domain-specific heuristics. The object generators used in
our research all have the same underlying idea. These are finite structures and
they can be systematically generated for all objects of a desired “size”. No
expert knowledge is required here. Generators like geng, the one used here for
generating graphs, are simply more efficient than ones non-experts can write. A
graph of order n, for instance, is simply a symmetric 0-1 matrix. A non-expert
can easily write a program that generates all symmetric 0-1 matrices up to any
order.

There is some sense in which domain-specific knowledge can be of use in im-
proving conjecture-making programs: experts do not need to consult the litera-
ture to find invariants and examples, and they can write more efficient object-
generators. Nevertheless we know of no example of a successful conjecture-
making program that uses domain-specific heuristics. And we only claim here
that domain-specific heuristics are not necessary.

2. Success of conjecturing programs is by design. Scientific discovery, in
general, is the result of effort directed at specific questions of interest; we are not
aware of any case of discovery which cannot to traced back to work on specific
problems. Even the famous example of Fleming’s discovery of penicillin is no
counterexample: Fleming had been investigating anti-bacterial agents.

The success of mathematical discovery programs that have contributed to
mathematical discovery can largely be explained by the fact that they were
designed to advance specific mathematical problems. Fajtlowicz’s Graffiti,
DeLaVina’s Graffiti.pc and the program Conjecturing discussed here con-
tribute to advancing research on existing mathematical problems insofar as they
produce bounds for mathematical invariants where bounds are of existing inter-
est. Borwein and Bailey’s programs contribute to advancing existing mathemat-
ical problems insofar as they produce closed form expressions for hypergeometric
series. AGX contributes to advancing existing mathematical problems insofar
as it finds characterizations of families of extremal graphs, McCune’s theorem
prover contributes to advancing research on existing mathematical problems in-
sofar as it proved open conjectures. Part of the reason that these programs
contribute to scientific discovery is that they were designed to contribute to sci-
entific discovery, designed to do things of existing interest to mathematicians.
Many mathematical discovery programs that were less successful than these
were not designed to address specific problems of interest.

Development of a program that contributes to scientific discoveries requires
knowing what counts as a contribution to scientific discovery; a successful dis-
covery program must make such a contribution. Scientists and mathematicians
must address this issue in their own work: to make a scientific discovery you
must first know what the open questions are and which ones are the most central.
And not all scientific and mathematical research is of equal value. Discovery of
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an efficient algorithm for computing the independence number of a graph, for in-
stance, would have explosive theoretical and practical consequences (as it would
yield an efficient algorithm for every other NP-hard invariant). The discovery
of an odd perfect number—whose existence has been an open question since at
least the time of Euclid—would have far fewer mathematical consequences, and
maybe no practical consequences.

The only way to determine the value of mathematical research is to engage
the community of mathematical researchers and users of mathematics about how
the research is connected to existing mathematical questions and what potential
consequences of the research are; there is no external criteria for judging the
value of mathematical research. Many mathematical papers explicitly address
an existing mathematical problem—they intend to make a contribution either by
answering an outstanding question, by helping to better understand the problem
or its difficulties, or by developing tools that might be used in attacking the
problem. In contrast, many mathematical papers do not explicitly or implicitly
address any existing mathematical problem; the contribution, if any, to scientific
discovery is considerably more tenuous. Some address a curious observation—
perhaps that all small integers can be written as a sum of two primes—and
attempt to explain that observation.

Some results in the mathematical literature are recorded in textbooks, passed
down, reproved, extended, and generalized; others are never used—and forgot-
ten. The utility of mathematics in the natural sciences and computer science is
its raison d’etre, and primary source of value to society. Of course, mathemati-
cians like Hardy have famously proclaimed their own desire to pursue mathe-
matical truths that are completely without practical utility [80]. He specifically
mentions that he did not want his research to be of any use in weapons de-
sign; it is worth noting that Hardy did not claim that he hoped his research
was without mathematical utility—of course he was interested in advancing
existing mathematical problems. The two examples he gives of “serious” but
“useless” mathematics are the theorems that there are infinitely many prime
numbers, and that the square root of two is irrational. But this mathematics
addressed existing mathematical questions and were, thus, of (mathematical)
utility: mathematicians were already interested in prime numbers, and they
had speculated that all lengths are commensurable (the proof that

√
2 is irra-

tional shows that they are not).
A researcher may attempt to design a conjecture-making program to pro-

duce statements that are “interesting” or “surprising” [81]—but if the produced
statements do not advance any existing problem then they cannot be expected
to make a scientific contribution regardless of how interesting or surprising they
are. Colton, for instance, set his program HR to find relations between the
integer invariants sigma (the sum of the divisors), tau (the number of divisors),
and the integer property isprime. Among the conjectures his program pro-
duced was:

for all a (isprime (sigma(a)) ⇒ isprime(tau(a)))
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Unless there is existing interest in necessary conditions for the primality of the
sum of the divisors of an integer, or sufficient conditions for the primality of
the number of divisors of an integer, this statement will not advance existing
mathematical research.

Some limitations on the statements produced by a conjecture-making pro-
gram may be required in order for the produced statements to be of use to
researchers—they may, for instance, need to be relatively simple in form. Hu-
man researchers often do not have any feeling for the meaning, much less the
truth, of very complicated statements. What Hardy calls the “depth” of a state-
ment could partly be measured by its (syntactic) complexity. It is often beyond
human mathematicians abilities to wrestle with complex statements involving
multiple invariants. Computers may be able to investigate deeper statements
than humans are able to. As automated theorem-proving programs improve,
complicated conjectures would be of use—they could be proved, and applied,
by machines; complexity aside, true statements can be used in making predic-
tions and guiding behavior.

3. Intelligent conjecture-making programs do not require sophisticated data-
mining techniques. An interesting feature of programs implementing the Dalma-
tian heuristic is that they can make conjectures based on only a few examples.
In this way they are similar to human conjecture-makers. If added examples are
counterexamples to previously made conjectures, then each of the examples is
“significant” to the program: no useless examples are stored or required. Again
this is similar to what humans do. We don’t remember every example—only
significant ones.

4. Developers of programs that contribute to scientific discovery should
not try to simulate human scientific discovery. If you could design a program
that does whatever it is that humans do when they make scientific discoveries
then, of course, you have solved the problem of automating scientific discovery.
But a program may be counted as intelligent while doing things in distinctly
non-human ways. The chess computer Deep Blue can certainly be said to play
intelligent chess. Since the success of the program is, at least in part, due to
its ability to evaluate hundreds of millions of positions per second—far beyond
human capabilities—Deep Blue is not said to simulate human chess playing.

Some researchers have aimed to simulate human scientific discovery [82].
Others have aimed to produce programs that contributed to new scientific dis-
coveries. Some hoped to do both. These differences and tensions date to the
earliest days of this research. Wang’s criticism of Simon and Newell’s Logic
Theorist was that their program wasn’t actually very good at proving theo-
rems. Wang produced a program that did a much better job at proving the
same body of test theorems [6]. Simon and Newell’s response was that their
goal was not to develop a program whose primary aim was to prove theorems
but, rather, to develop a program that proves theorems in the way that humans
do, to “simulate” human theorem-proving abilities. Wang made no claim that
his program simulated human theorem proving.

Lenat’s work on AM is often cited as a contribution to research on the au-
tomation of mathematical discovery [81]. But AM was not designed to make
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mathematical discoveries: that is, it was not designed to produce statements
that addressed any existing mathematical problems. And it did not make any
mathematical discoveries. It was designed to do something else entirely—to
simulate human mathematical discovery—and should be evaluated by the stan-
dards of simulation research. Research on automated scientific discovery must
look to, and build on, the successful ideas in discovery research. Confusion on
the issue of simulation versus discovery dates to the earliest days of this research.
Wang reports that he read Lenat’s dissertation (about the development of his
AM program), and writes that he, “could not see how one might further build
on such a baffling foundation”[83]. What Wang failed to understand is that
Lenat’s program was a contribution to simulation research and not designed
to contribute to mathematical research. And the confusion continues to the
present day—which, if not corrected, can hinder research on programs meant
to make contributions to mathematical discovery.

12. Appendix: Acquiring and Using the Program

We provide a program for experimentation and further development. Read-
ers are encouraged to make their own explorations. Our program Conjec-
turing is available at: nvcleemp.github.io/conjecturing/. It functions as
a package of the Sage open source mathematical software program [84]. Sage
is intended as a free replacement for general mathematical software programs
such as Maple, Matlab and Mathematica. In contrast with proprietary pro-
grams, anyone can examine, correct, and improve Sage’s included algorithms
and code. Sage users who develop programs for their own research are encour-
aged to include them in the public distribution of Sage, for general use; the user
base, and community of developers, are large and growing. Versions of Sage
for all major operating systems, manuals, and documentation are available at:
www.sagemath.org. Examples, and the use of our program, are discussed below.

Our program is designed as a Sage package. The attraction of Sage for this
project stems from the fact that it is free, that it is easy-to-use, that it has a
large number of built-in invariants for a variety of mathematical objects, and
that other researchers can easily use our code. Sage uses Python as its interface
language and includes well-known packages such as GAP for computer algebra,
SINGULAR for algebraic geometry, PARI for number theory, LAPACK for
linear algebra, R for statistical computation, NumPy and SciPy for numeri-
cal computing, and CVXOPT for convex optimization, linear and semidefinite
programming.

The first part of the program is the expression generator described earlier.
This C program is wrapped into a Sage package which allows it to be installed
with one command. The second part of the program, containing the main
loop, is the Python file conjecturing.py. This file can be loaded into Sage to
provide a seamless integration of the expressions generator using the Dalmatian
heuristic. It provides a method conjecture that—in its most basic form—takes
three arguments: a list of objects, a list of invariants and a main invariant, that
is, the invariant for which one wants to find a bound. The objects can be any
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(Sage) objects; the only provision is that the invariants are able to translate
the objects to numerical values. The invariants must be functions of a single
argument (the inputs are the objects). The main invariant is represented by the
index of its location in the list of invariants.

The conjecture-making code was partly based on Patrick Gaskill’s code for a
related project, and is available at: github.com/IndependenceNumberProject/
inp.

What follows is a short example of how the conjecture method can be used
in Sage.

sage: def max degree(g):

....: return max(g.degree())

....:

sage: invariants = [Graph.size, Graph.order, max degree]

sage: objects = [graphs.CompleteGraph(n) for n in [3,4,5]]

sage: conjecture(objects, invariants, 0)

[size(x) <= 2*order(x),

size(x) <= max degree(x)^2 - 1,

size(x) <= 1/2*order(x)*max degree(x)]

The first two lines of this example define a new (that is, not existing in Sage)
graph theoretic invariant max degree. The next line specifies invariants to
be a list of built-in and user-defined invariants; these will potentially appear
in the conjectured expressions; and the user can remove any of these and add
as many others as she likes. The fourth line specifies objects to be a list of
graphs that will be used by the program when making conjectures—in this case
the list is initialized with three complete graphs. Again, the user can remove
any of these and add arbitrarily many others. The conjecture function takes
the lists of invariants and objects, together with a number specifying which of
the invariants in the invariants list should be used as the main invariant; in
this case, 0 is input, indicating that invariants[0]—namely, Graph.size—
should be used as the main invariant. The last three lines are the output of
the program, three conjectured upper bounds for the size of a graph. All three
conjectures happen to be false: they are all necessarily true for the complete
graphs on 3, 4 and 5 vertices—but are false for other graphs not in the input
list.

Scripts that generate the conjectures for most of the reported runs of our pro-
gram are also available at: nvcleemp.github.io/conjecturing/. The scripts
used to generate the conjectures above are listed in Table 19. The purpose of
providing these scripts is two-fold. They allow for the reproducibility of our re-
sults, and they also provide models for researchers to imitate in generating their
own conjectures. Exact reproducibility will depend on whether the researcher is
using a machine that is the same speed as the second author’s. The expression
generation program times out after 5 seconds. A user on a faster machine will
generate more expressions to test for truth and significance than our machine
did; one on a slower machine will generate fewer expressions. In either case,
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there is then a possibility of ending up with slightly different conjectures than
the conjectures we report below.

All invariants used in our experiments are either built-in Sage functions or
user-defined procedures. The code for the user-defined procedures can be found
in the files: matrixtheory.py, numbertheory.py, and graphtheory.py.

Here are more details about the generation of the matrix theory conjectures.
The first rounds of conjectures used symmetric 2×2 matrices with integer entries
ranging from −10 to 10. This was to allow systematic generation of a family
of examples. In fact, 2 × 2 matrices turned out to be too special of a subclass
of matrices to lead to good conjectures—other researchers quickly found 3 × 3
matrices that were counterexamples to many of these.

Furthermore, the specialness of these examples led to non-general conjec-
tures. In one run, for instance, the program conjectured that, for any symmetric
matrix, the absolute value of the determinant is at least as large as the smallest
eigenvalue. In fact, this conjecture is true for 2 × 2 matrices with integer en-
tries. But it is certainly not true in general (a diagonal matrix with 1

2 ’s on the
diagonal is a counterexample).

We expect that generation of larger matrices with a larger range of entries
would lead to better conjectures. In this case it will become impossible to
systematically generate any interesting class, and a researcher may experiment
with choosing randomly generated matrices from a chosen class.

McKay’s program geng, which we used for generating all graphs up to any
specified order, is freely available for non-commercial use and works easily with
Sage.

Conjectures Script

Table 2 determinant upper bound conjectures.py

Table 3 determinant lower bound conjectures.py

Table 4 abs determinant upper bound conjectures1.py

Table 5 abs determinant lower bound conjectures2.py

Table 6 goldbach conjectures1.py

Table 7 goldbach conjectures2.py

Table 8 prime pi conjectures1.py

Table 11 riemann conjectures.py

Table 10 riemann conjectures.py

Table 12 domination upper bound conjectures.py

Table 14 domination upper bound conjectures2.py

Table 15 domination lower bound conjectures.py

Table 19: Associated scripts for conjecture runs.
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