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The possible zero/nonzero patterns of unitary matrices are of interest in quantum evolution
and the study of quantum systems on graphs. In particular, a quantum random walk can be
defined on a directed graph if and only if that graph is associated with a unitary matrix pattern.
We propose positive semidefinite zero forcing as a way to determine whether there exists a unitary
matrix with a given zero/nonzero pattern. We show that zero forcing is a better criterion than
strong quadrangularity of the pattern and prove that an n-by-n pattern supports a unitary matrix
if and only if its positive semidefinite zero forcing number equals n for n ≤ 5.
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The zero/nonzero patterns of unitary matrices are of interest both in quantum
physics and mathematics. For example, the quantum analog of a random walk,
useful in quantum computation [2,3], can only be defined on directed graph if that
graph is the directed graph of a unitary pattern. As another example, the “no-go
lemma” [10, 11, 16] asserts that a pattern whose directed graph is an n-path is not
the pattern of a unitary matrix and, as a result, there does not exist a nontrivial
homogeneous local one-dimensional quantum cellular automaton. These patterns also
appear in work on the foundations of quantum mechanics [14] and in the study of
quantum systems [18].

Related research includes conditions on the possible number of zeros in an n-by-n
unitary matrix [7], as well as studying similar questions for sign patterns [22]. Zero
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forcing was defined to help study minimum rank problems [1], and is of interest in
the control of quantum systems [4]. For further information, we highly recommend
the detailed survey of quantum applications of patterns of unitary matrices in a recent
article of Severini and Szöllősi [19] and the discussion in Severini’s first article on
this topic [20].

In this article, we address the question of whether, given a zero/nonzero pattern,
there exists a unitary matrix with that pattern. While we specifically consider unitary
matrices, similar questions can be asked for real orthogonal and rational orthogonal
matrices. Hall and Severini recently showed that in general a pattern that supports
a unitary matrix need not support a real or rational orthogonal matrix [12]. However,
5-by-5 and smaller unitary patterns do support both real and rational orthogonal
matrices [8]. In this paper, all of our results work equally well if “unitary” is
replaced by “real orthogonal” or “rational orthogonal”. It would be interesting to
know if other types of zero forcing could be used to detect unitary patterns that
do not support a real orthogonal matrix.

1. Matrices and graphs
A graph G = (V , E) consists of a set V of vertices and a set E of unordered

pairs of vertices called edges. We assume all graphs to be simple in that there
are no multiple edges or loops (edges from a vertex to itself). a bipartite graph
is a graph whose vertex set can be partitioned into two sets V = M ∪ N where
no edge has both vertices in M or both vertices in N . a directed graph (digraph)
is a graph with directed edges (ordered pairs of vertices). The neighborhood of
a vertex v in a graph G, denoted by N(v), is the set of vertices adjacent to v.

a (zero/nonzero) pattern is a matrix with entries from {0, 1}. The pattern of
a complex matrix is the matrix obtained by replacing all nonzero entries with “1”.
The size of an m-by-n matrix or pattern is max{m, n}. The support of a matrix or
pattern is the set of the locations of its nonzero entries.

A complex matrix U is unitary if UU ∗ = U ∗U = I , where I is the identity
matrix. a pattern is unitary if it is the pattern of a unitary matrix. We will say that
two patterns are equivalent if one can be obtained from the other by permutation
of rows and columns and/or matrix transpose. Thus, if P and Q are equivalent
patterns, P is unitary if and only if Q is, and we will often consider single
representatives of the equivalence classes in what follows. a pattern (or matrix) P
generates a bipartite graph B(P ) by taking the rows as one partite set, the columns
as the other, and placing an edge between row i and column j if and only if the
i, j entry is nonzero.

An n-by-n matrix (or pattern) A is fully indecomposable if it does not have
a p-by-q zero submatrix with p + q = n. a pattern is fully indecomposable if and
only if its bipartite graph is connected [6]. Whether or not a pattern that is not
fully indecomposable is unitary can be determined by studying the same question
for its fully indecomposable subpatterns, so we will assume that all graphs are
connected and only consider matrices and patterns that are fully indecomposable.



GRAPHS OF UNITARY MATRICES AND POSITIVE SEMIDEFINITE ZERO FORCING 313

A bipartite graph G = (M ∪ N, E) is called strongly quadrangular if for each
subset S of either M or N that has the property that, for all v ∈ S, there exists
w ̸= v ∈ S such that N(v) ∩ N(w) ̸= ∅,

∣∣∣∣
⋃

v,w∈S;v ̸=w

N(v) ∩ N(w)

∣∣∣∣ ≥ |S|.

We will say the pattern P is strongly quadrangular if and only if B(P ) is.
It was conjectured that a pattern P is unitary if and only if it is strongly

quadrangular [20]. In fact, we have the following result.

THEOREM 1 ([19, Proposition 2.4]). A pattern P of size at most four is unitary
if and only if it is strongly quadrangular.

However, examples were found of patterns that are strongly quadrangular but are
not unitary [15]. For example, we have the following theorem:

THEOREM 2 ([8, Proposition 2.1]). Up to equivalence, there are three strongly
quadrangular 5-by-5 patterns that are not unitary:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1

0 0 1 1 1

1 1 0 1 1

1 1 1 1 1

1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1

0 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1

0 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2. Minimum rank and zero forcing
A complex Hermitian positive semidefinite n-by-n matrix (or symmetric pattern)

A = [aij ] defines a graph G(A) that has vertex set {1, . . . , n} and edge set
{ij : i ̸= j, aij ̸= 0}. Note that the diagonal entries of the matrix do not impact
the graph. Given a graph G on n vertices, let P(G) be the set of positive
semidefinite matrices whose graph is isomorphic to G. The minimum semidefinite
rank of G, msr(G), is the smallest possible rank among matrices in P(G). Setting
M+(G) = n − msr(G) gives the corresponding maximum nullity of G. As it turns
out, minimum rank and maximum nullity are intimately related to unitary patterns.

THEOREM 3 ([13, Proposition 3.1]). An n-by-n pattern P is unitary if and only
if M+(B(P )) = n.

Suppose that the vertices of a graph G are colored either white or black. The
positive semidefinite color-change rule is the following: If there exists a black vertex
v that has exactly one white neighbor u in a connected component of the graph
obtained from G by removing all of the black vertices, then change the color of
u to black. a (positive semidefinite) zero forcing set for a graph G is a subset of
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vertices Z such that given a coloring of the vertices of G where all the vertices of
Z are black, repeated application of the color-change rule can result in all of the
vertices being colored black. The (positive semidefinite) zero forcing number Z+(G)
is the size of a smallest zero forcing set. Because row and column permutations
and the transpose of a pattern P correspond to graph isomorphisms of B(P ), if P
and Q are equivalent patterns then Z+(B(P )) = Z+(B(Q)).

Zero forcing is of interest here since Z+(G) ≥ M+(G) for all graphs G [9]. In
particular, for a bipartite graph G = (M ∪N, E), M+(G) ≤ Z+(G) ≤ min{|M|, |N |},
since removing either M or N leaves only isolated vertices, and so both M and N
are zero forcing sets for G. Thus, using Theorem 3, one has the following theorem.

THEOREM 4. If Z+(B(P )) < n for an n-by-n pattern P , then P is not unitary.

3. The converse
One may also hope the converse to Theorem 4 is true, so that an m-by-m

pattern P is unitary if and only if Z+(B(P )) = m. We will see however, that this
is unfortunately not the case in general.

Let G = (V = M ∪N, E) be a bipartite graph with |M| = |N | = n. We do have
the following result:

THEOREM 5. If Z+(G) = n then G is strongly quadrangular.

Proof : Assume that G is not strongly quadrangular. Let (without loss of generality)
S ⊆ M , define

T =
⋃

v,w∈S;v ̸=w

N(v) ∩ N(w) ⊆ N,

and suppose |T | < |S|. We claim that Z = (M \ S) ∪ T is a zero forcing set. From
the definition of T , any two vertices of S cannot have a common neighbor outside
of T . Thus every two vertices of S are in different connected components in G\Z,
so that any vertex of T may force any neighbor in S. Once the vertices of S are
black, all of the vertices of M are black, and the remaining vertices of N can be
forced by those of M . !

Thus, Z+ gives a potentially stronger criterion than strong quadrangularity for
determining if a pattern is unitary. To show that it is indeed stronger, we consider
a family of patterns that are known to not be unitary but some of which are
strongly quadrangular [19].

THEOREM 6. Let P be a zero/nonzero pattern equivalent to a pattern with the
following form: ⎡

⎣Q J3×2 ∗
X Y ∗

⎤

⎦ ,
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where k ≥ 1, J is the matrix of all ones, and

Q =

⎡

⎢⎢⎣

1 0

0 1

1 1

⎤

⎥⎥⎦ .

Further suppose the columns of Y have disjoint supports and that every column of
X has support disjoint from every column of Y . Then P is not unitary and has
Z+(B(P )) < n.

Proof : Let ri and cj denote the vertices corresponding to row i and column j ,
respectively, in B(P ). We claim that {r3, c2, c4, . . . , cn} is a zero forcing set. Because
of the support assumptions, aside from r2, if c2 is adjacent to any white vertices,
then those vertices are adjacent neither to c1 nor to c3. Thus c2 may force r2. Since
r2 is not adjacent to c1, it may force c3. Again using the support assumptions, c3
may force r1, which may force c1, and the remaining vertices follow as one partite
set is black. !

The family in Theorem 6 contains two of the examples of Theorem 2 [19]. The
remaining pattern, ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1

0 0 1 1 1

1 1 0 1 1

1 1 1 1 1

1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

has Z+ < 5, as the vertices corresponding to rows four and five and columns four
and five give a zero forcing set, as the reader may verify. In particular,

COROLLARY 1. A square pattern P of size m ≤ 5 is unitary if and only if
Z+(B(P )) = m.

4. A counterexample
Severini and Szöllősi [19] define another family of patterns that are not unitary

but some of which are strongly quadrangular: Let P be a zero/nonzero pattern
equivalent to a pattern with the following form:

⎡

⎣Q J3×k X

Y Z ∗

⎤

⎦

where k ≥ 1, J is the matrix of all ones, and Q is as in Theorem 6.
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Further suppose that the rows of X have disjoint supports and every column of
Y has support disjoint from every column of Z. Then P is not unitary.

All but one of the known examples of nonunitary strongly quadrangular patterns
have been drawn either from this family or from the family of Theorem 6. The
one exception was the first such example [15], and it provided the inspiration
for the definition of the family above. As it turns out, and as the reader may
verify, this family has strongly quadrangular 6-by-6 elements P all of which have
Z+(B(P )) < 6, but also contains the 7-by-7 pattern

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 0 0

0 1 1 1 0 1 0

1 1 1 1 0 0 1

1 1 0 0 1 1 1

1 1 0 0 1 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which has Z+(B(Q)) = 7.
We should remark that although there are infinitely many graphs G for which

M+(G) < Z+(G) [17], all previously known examples were built from the smallest
known example, the Möbius Ladder graph on eight vertices. Thus the pattern Q
provides a new example for which M+(G) < Z+(G).

Also, for any graph G, one can repeatedly subdivide edges of G to get a bipartite
graph B for which M+(G) = M+(B) [13] and Z+(G) = Z+(B). Thus, there are
infinitely many bipartite graphs for which M+(G) < Z+(G). However, we have
been unable to produce a bipartite graph with equal-size partite sets and maximum
possible Z+ using edge subdivision of the known graphs with M+(G) < Z+(G).
Thus the pattern Q also provides the first example of a bipartite graph B on with
equal-size partite sets for which M+(B) < Z+(B) = |B|/2.

5. Further results

We next consider patterns larger than 5-by-5 and more general techniques. In
particular, is it true that a 6-by-6 pattern P is unitary if and only if Z+(B(P )) = 6?
As mentioned above, we have not so far found any counterexamples. Algorithms
exist to compute Z+ [5], and we can rule out many patterns as nonunitary.
Unfortunately, to prove a pattern is unitary remains difficult. To help reduce the
number of equivalence classes we must check, we recall some known techniques
for constructing unitary matrices from known unitary matrices and show that these
constructions behave as we would wish with respect to zero forcing.
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THEOREM 7 ([13, Proposition 4.6]). An n-by-n square pattern whose support
contains the support of the n-by-n upper Hessenberg pattern

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1 1

1 1 1 . . . 1 1

0 1 1 . . . 1 1

0 0 1 . . . 1 1
...

...
...

. . .
...

...

0 0 0 . . . 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is unitary.

A Givens rotation is an orthogonal matrix of the form

P

⎡

⎢⎢⎣

cos θ − sin θ

sin θ cos θ
OT

O I

⎤

⎥⎥⎦ P T

for some permutation matrix P , 0 ≤ θ < 2π , and appropriately sized zero matrix
O and identity matrix I .

THEOREM 8. Suppose A is an n-by-n real orthogonal matrix with zero/nonzero
pattern P . Let i and j be rows (or columns) of A. There exists a Givens rotation
G such that the zero/nonzero pattern of GA (AG) has the supports of i and j
replaced by the union of the supports of i and j . Further, if A is rational, then
G can be chosen to be rational as well.

Proof : Let G be a Givens rotation affecting rows i and j of A. If, for some
k, either the i, k or j, k-entry of A is nonzero, then there are only finitely many
values of θ ∈ [0, 2π) for which either of the corresponding entries of GA can
be zero. It follows that for all but finitely many values of θ , the matrix GA has
nonzero entries in row i and j wherever there was a nonzero entry in either row
of A. The proof for columns is similar. !

Define the union of two patterns of the same size to be the pattern with zeros
only where both patterns had zeros.

COROLLARY 2. Let P ′ be the pattern obtained from an n-by-n pattern P by
replacing two rows (or two columns) with the union of those rows (columns). If P
is unitary then so is P ′.

THEOREM 9 ([21, Theorem 1.1]). Let Q be an n-by-n orthogonal matrix of the
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form

Q =

⎡

⎣U 0

V W

⎤

⎦

where U is k-by-(k + l) and W is (m + l)-by-m for some positive k and m and
nonnegative l with k + l + m = n. Then the rank of V is l.

THEOREM 10. Suppose P is an n-by-n pattern of the form
⎡

⎣a vwT

0 B

⎤

⎦

where A is of size (k + 1)-by-k and B is (n − k − 1)-by-(n − k) for some positive
k, and v and w are column patterns. Then P is unitary if and only if both the
patterns

PA =
[
a v

]
and PB =

⎡

⎣wT

B

⎤

⎦

are unitary. Moreover, Z+(B(P )) = n implies Z+(B(PA)) = k+1 and Z+(B(PB)) =
n − k.

Proof : If P is unitary, that PA and PB are both unitary follows from Theorem 9.
If

[
C x

]
and

⎡

⎣y∗

D

⎤

⎦

are unitary matrices of the right dimensions, then C∗C, DD∗, CC∗ + xx∗, and
D∗D + yy∗ are identity matrices, x∗x = yy∗ = 1, and Dy = 0, so that

⎡

⎣C xy∗

0 D

⎤

⎦

⎡

⎣C xy∗

0 D

⎤

⎦
∗

=

⎡

⎣CC∗ + xy∗yx∗ xy∗D∗

Dyx∗ D∗D + yy∗

⎤

⎦ =

⎡

⎣I 0

0 I

⎤

⎦ .

For the zero forcing, subdivide the vertices of B(P ) as follows: Let R and C be
the sets of vertices from the rows and columns. Let B0 and B∗ be the elements of C
corresponding to zero and nonzero entries of wT , respectively, and similarly define
A0 and A∗ using R and v. Next, let Ac = C \ (B0 ∪ B∗) and Br = R \ (A0 ∪ A∗).
With this decomposition, notice that the vertices only are adjacent as indicated in
the following diagram:

A0 ↔ Ac ↔ A∗ ↔ B∗ ↔ Bc ↔ B0.

Moreover, any two vertices of A∗ have the same neighbors in B∗ and vice versa.
Suppose without loss of generality that Z+(B(PA)) < k +1 and let ZA be a zero

forcing set of B(PA) of cardinality k. Choose a distinguished vertex b ∈ B∗. Then
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the subgraph of B(P ) induced by A0 ∪ A∗ ∪ Ac ∪ {b} is isomorphic to B(PA).
Use this isomorphism to color the vertices of A0 ∪ A∗ ∪ Ac ∪ {b} black or white
according to ZA. Next, color the vertices of (B∗ \ {b}) ∪ B0 black. We claim the
result, which has k + n − k − 1 = n − 1 vertices, is a zero forcing set for B(P ).
Since b is the only potentially white vertex of B∗, the copy of ZA can force all
of A0 ∪ A∗ ∪ Ac ∪ {b} as it would in B(PA), and the result is that every vertex of
C is now black, which can force the remaining white vertices (Bc). !

In particular, Theorem 10 allows the following reduction: Given an n-by-n pattern
P of the correct form and with Z+(B(P )) = n, if the conjecture is true for all
smaller matrices, then Z+(B(PA)) = k + 1 and Z+(B(PB)) = n − k imply that PA

and PB are unitary, and thus P is unitary by Theorem 10.
The results of this section allow the following steps towards determining whether

all 6-by-6 patterns P are unitary if and only if Z+(B(P )) = 6: First, remove any
patterns that have Z+ < 6, as they are not unitary. Next, remove each pattern P ′

that can be obtained from a remaining pattern P as in Corollary 2, as, if the
pattern P is not a counterexample, then neither will P ′ be—one can view this as
letting Corollary 2 define a partial order on the patterns (P < Q if Q can be
obtained from P by taking the union of two rows or two columns) and then only
having to consider the minimal patterns (those Q for which there does not exist
a P with P < Q). Third, remove patterns that are equivalent to a pattern containing
an upper Hessenberg pattern, as they are unitary and satisfy the conjecture, and
any patterns that have the form of Theorem 10. Finally, take a representative from
each remaining equivalence class.

This considerably narrows the computations required to check the 6-by-6 patterns,
leaving 147 exceptional (equivalence classes of) patterns with Z+(B(P )) = 6, and
each of these patterns will need to be checked in order to determine if they admit
a unitary matrix. If each pattern admits such a matrix, then a 6-by-6 pattern P is
unitary if and only if Z+(B(P )) = 6.
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