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Abstract. A simplified Hückel-type molecular-orbital (MO) model for the

valence electrons of saturated hydrocarbons is proposed and the consequent

eigenvalue spectrum considered. A first foundational result is obtained, which

every chemist “knows”, namely that: alkanes are stable, with half their (Hückel-

type MO) eigenvalues positive and half negative.
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1. Saturated Hydrocarbons and the Stellation Model

Saturated hydrocarbons have long (that is, for well more than a century) served

as the foundational introduction to organic chemistry. During the last four decades

chemical graph theory has become prominent—much of it dedicated to classical

Hückel theory of conjugated π-electron networks, where the Hückel Hamiltonian

coincides (up to a shift and scale) with the mathematical graph-theoretic adja-

cency matrix, for example, as emphasized in [12]. Along with this application of

mathematical graph theory there has been extensive development of an extensive

array of molecular topological indices, mostly for uses in QSAR, for example, as

reviewed in [5]. Yet there has also been a sporadic array of several other usages

of chemical graph theory, say as in isomer enumeration, for example, with a spe-

cial issue of MATCH devoted to this [7]. But what is (possibly) amazing is that

there has been practically no effort to use chemical graph theory for describing the

electronic structure of molecules other than conjugated hydrocarbons.

Here a step is taken towards the rectification of this utter paucity of application

of mathematical graph theory to other comparable electronic-structure problems.

In particular, here a simple Hückel-type MO model for the valence electrons of

saturated hydrocarbons is described and then some first consequential results are

obtained.

Definition 1.1. A saturated hydrocarbon is a connected graph whose vertices have

both degrees one and four and no other degrees.

The authors acknowledge the Welch Foundation of Houston, Texas, for support for this re-

search, via grant BD-0894.
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Figure 1. The graphs of the saturated hydrocarbons methane

CH4 and ethane C2H6. These are both alkanes. The degree-one

vertices correspond to H atoms and the degree-four sites corre-

spond to C atoms.

The degree-4 and degree-1 vertices respectively correspond to C and H atoms.

See, for example, Figure 1. The present electronic-structure model is framed in

terms of the four sp3-hybrid orbitals of each carbon atom along with the single

1s-orbital of each hydrogen. The stellated graph G∗ associated to this model for

a saturated hydrocarbon has a vertex set V ∗ = V (G∗) corresponding to each of

these orbitals (four for each C and one for each H) with an edge set E∗ = E(G∗)

partitioned into two subsets of edges, namely internal edges E∗int and external edges

E∗ext. This internal set consists of six edges for the four hybrid orbitals of each C

atom (that is, each such orbital in a C atom is bonded or linked together by an

edge of E∗int), and each external bond e∗ ∈ E∗ext corresponds to a unique edge

e of G interconnecting the same pair of atoms—each vertex of G∗ is connected

to a unique other vertex (of G∗) in the other atom to which e connects. Thus,

for example, methane and ethane commonly denoted in Figure 1 give rise to the

electronic structure graphs G∗ of Figure 2, where the external edges are shown in

bold. Chemically, each C-atom hybrid (represented by a v∗ ∈ V ∗) points along

one bond direction to interact with a unique other orbital in another atom (such as

indicated in G), while also there are interactions amongst the hybrids within the

same atom.

Mathematically one may represent the vertex and edge sets of G∗ thusly.

Definition 1.2. The stellation of a graph G is the graph G∗ with vertices V (G∗) =

∪ab∈E(G){(a, b), (b, a)}. Vertices (x, y), (z, w) ∈ V (G∗) are adjacent if, and only if,

either x = z or both x = w and y = z. Then E∗int = {(a, b)(b, a) : a ∼ b in G},
E∗ext = {(a, b)(a, c) : a ∼ b and a ∼ c in G}, and E(G∗) = E∗int ∪ E∗ext.

Clearly , |V (G∗)| = 2|E(G)|, and |E∗ext| = |E(G)|. Note that, for a fixed vertex v,

the vertices in the set {(v, a) : v ∼ a ∈ V (G)} form a clique in G∗. Note too that

the external edges form a perfect matching (or “Kekule structure”) of G∗.
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Now our stellated graphs are complicit in much early work on alkanes. For

representative historic examples see Sandorfy [22], Fukui et al. [8], or Pople and

Santry [19] (or in a much more disquised form in Hoffmann [14]). More recently

there has been some modest amount of work also, for example, in [9, 10]. But in all

these these works, the aim seems to be to develop an elaborate parameterization

to closely mimic (SCF) ab initio computations so as to enable facile application

to individual molecules, one after another, after another, etc. In contrast here, we

propose simplified models for which general theorems might be developed for whole

(infinite) classes of molecules. Recently on the mathematical side, para-line graphs

have been described [23] as derived from a parent graph by taking the line graph

of the graph obtained via subdivision of the edges of G. Indeed then this para-line

graph is our stellated graph G∗.

In these earlier chemical works [22, 8, 19, 10, 9] the graph becomes quite deco-

rated with different weights. Amongst such modifications, the most important gives

different weights to the internal and external graph edges—appropriate weightings

for the internal edges being in the neighborhood of half the weighting for the ex-

ternal edges (whose weights we take = 1). In this earlier work the C-C and C-H

external bonds are weighted differently, typically differing in weight by <10%, so it

seems a not too unreasonable approximation for our general purposes to treat these

as equivalent. A more severe approximation which we here also make is to treat

the orbitals of the H and C atoms as equivalent (i.e., to take their diagonal matrix

elements equal, here shifted to = 0)—in a better imitation of reality these should

differ from one another by roughly 1/4 of the C-C (external edge) interaction.

A common introductory chemistry description neglects the internal interactions

to leave only the external interactions, with an externally bonded pairs forming

C-C or C-H bond orbitals, each of which is then doubly occupied (spin-up and

spin-down)—see also Pople and Santry [19, Theorem 1]. (That our theorem makes

notably less severe presumptions on the parameter values, indicates its conceptual

value, as Pople and Santry viewed such a weaker theorem important to state.) The

other antisymmetric bond orbitals play a role in the excited states of saturated

hydrocarbons [13, 20]. Finally some other possible early realizations of our stellated

graphs are mentioned in our conclusions.

2. Results

For a stellated graph G∗ with vertex set V (G∗) = {v1, . . . , vn} we define a

weighted adjacency matrix Aw as follows: Awi,j = 1 if vivj is an external edge in

G∗, Awi,j = w if vivj is a internal edge, and Awi,j = 0 otherwise. Aw is the weighted
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Figure 2. The stellated graphs of the saturated hydrocarbons

methane CH4 and ethane C2H6. The pendant edges and edge v2v6

have unit weight. These are (the highlighted) external edges cor-

responding to the edges of CH4 and C2H6. The internal edges,

forming four-element cliques, are edges with weight w. For stel-

lated methane and ethane with internal edges of any weight, the

determinant is, respectively, 1 and −1. Lemma 2.2 then implies

that half the eigenvalues are positive and half are negative. With

internal weights w = 0.5, the eigenvalues are (approximately) 2.0,

0.78, 0.78, 0.78, -0.5, -1.28, -1.28, -1.28.

adjacency matrix for G∗, and typically w ∈ [0, 1). When no confusion is possible,

we abuse notation and denote the weighted adjacency matrix of G∗ by “G∗”.

We utilize the definition of the determinant of a matrix, defined as follows.

Definition 2.1. The determinant of an n×n square matrix A with entries Ai,j is

detA =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ai,σ(i),

where Sn is the set of permutations from [n] to itself and sgn(σ) is 1 if σ can be

written as an even number of permutations and −1 otherwise.

Lemma 2.2. Let G be a graph with a perfect matching M , with edges in M having

unit weight and remaining edges weighted w in a (non-trivial) interval I ⊆ R con-

taining 0, and corresponding (weighted) adjacency matrix Aw. If detAw 6= 0 for

all w ∈ I then Aw has half positive and half negative eigenvalues for each w ∈ I.

Proof. Let G be a graph with a perfect matching M , with edges in M weighted

one and remaining edges weighted w ∈ I. Let Aw be the corresponding (weighted)

adjacency matrix and detAw 6= 0.

Since M is a perfect matching, in the case where w = 0, Aw is a 0-1 matrix

which is the same as the adjacency matrix for the graph induced on M . This graph
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has |M | positive (+1) and |M | negative (−1) eigenvalues. The determinant detAw

is a continuous function of w and, as w varies, the eigenvalues vary continuously.

No eigenvalue of Aw can equal 0 for any w ∈ I, for if it did then detAw = 0,

contradicting our assumption. Since no eigenvalue can be 0, no eigenvalue can

change sign—it would have to cross through 0—and the number of positive and

negative eigenvalues remains constant for every w ∈ I. Since half are positive and

half are negative when w = 0 it follows that half are positive and half are negative

for every w ∈ I. �

We now prove complete results for acyclic and unicyclic saturated hydrocarbons,

followed by results in the general case.

Definition 2.3. An alkane is an acyclic saturated hydrocarbon.

Alkanes, by definition, are trees whose vertices have both degrees one and four and

no other degrees. They include methane and ethane (see Figure 1).

Lemma 2.4. Every alkane has a vertex adjacent to either 3 or 4 pendant vertices.

Proof. Let G be an alkane. Let v and w be vertices at maximum distance in G. v

and w are necessarily pendant vertices. Let v = v1, . . . , vk = w be a shortest path

between these vertices. vk−1 must have degree four. Let a and b be the non-path

neighbors of vk−1. a and b must both be pendants. Assume a is not a pendant. Let

a′ be any neighbor of a besides vk−1. There is a unique path v = v1, . . . , vk−1, a, a
′

from v to a′. This path has length k+1 contradicting the assumption that the path

from v to w has maximum length. Thus, vk−1 has either just the three pendant

neighbors a, b and w or, in the case that k = 2 and v is adjacent to vk−1, four

pendant neighbors a, b, v and w. �

Theorem 2.5. If G is an alkane then its stellation G∗ has half positive and half

negative eigenvalues for any real number internal edge weight w.

Proof. The statement is true for the graph K1,4 (corresponding to methane CH4)

representing the smallest alkane: the stellation of this graph has non-zero determi-

nant, for any real number internal edge weight w. The claim then holds by Lemma

2.2. Assume then that the claim holds for any alkane with fewer than n vertices.

Let G be an alkane with n vertices. Lemma 2.4 implies that G has a vertex

with three pendant neighbors a, b and c. Let Gv be the alkane formed by removing

vertices a, b and c from G, together with incident edges. By assumption detG∗v 6= 0

for any internal edge weight w. We will show that detG∗ = −detG∗v for any

internal edge weight w and, thus, detG∗ 6= 0.
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The vertices of G∗ include (v, a), (v, b), (v, c), (a, v), (b, v), and (c, v). Assume G∗

has m vertices. Let vm−5 = (v, a), vm−4 = (v, b), vm−3 = (v, c), vm−2 = (a, v),

vm−1 = (b, v), and vm = (c, v). So vm−i is adjacent to vm−i−3 for i ∈ {0, 1, 2}.
Now

detG∗ =
∑
σ∈Sm

sgn(σ)

m∏
i=1

G∗i,σ(i).

Any non-zero summand in this expression corresponds to a permutation σ ∈ Sm
that sends the index of a pendant vertex to that of its neighbor, and the index

of the neighbor back to the index of the pendant. It follows that σ contains the

transpositions (m− i,m− i−3) for i ∈ {0, 1, 2}. Since these correspond to external

edges their weights are 1; that is, G∗m−i−3,σ(m−i−3) = G∗m−i,σ(m−i) = 1 for i ∈
{0, 1, 2}. Then

detG∗v =
∑

σ′∈Sm−6

sgn(σ′)

m−6∏
i=1

G∗vi,σ′(i) .

Let σ′ ∈ Sm−6 be any permutation corresponding to a non-zero summand in detG∗v.

The non-zero summands in detG∗ and detG∗v are in bijective correspondence, where

σ ∈ Sm must have the form σ = σ′(m − 5,m − 2)(m − 4,m − 1)(m − 3,m),

with sgn(σ) = −sgn(σ′). Thus the non-zero summands of detG∗ are exactly the

negatives of the non-zero summands of detGv. So detG∗ = −detG∗v for any

internal edge weight w, and detG∗ 6= 0 by the inductive assumption. Lemma 2.2

then implies that G∗ has half positive and half negative eigenvalues for any real

number edge weight w. �

Lemma 2.6. If C2k is an even cycle with edge weights alternating between 1 and

w ∈ (0, 1) then detC2k 6= 0.

Proof. By definition,

detC2k =
∑
σ∈S2k

sgn(σ)

2k∏
i=1

C2ki,σ(i) .

There are three possibilities for the permutations corresponding to the non-zero

summands. In the first case, for each of the edges weighted w, the permutation

associates each edge endpoint to the opposite endpoint. In this case the summand

will equal (−1)kw2k, as each of the k transpositions contributes w2 to the prod-

uct. In the second case, for each of the edges weighted 1, the permutation again

associates each edge endpoint to the opposite endpoint. In this case the summand

will equal (−1)k1, as the permutation can be represented as k transpositions and

each of the 2k terms in the product equals 1. In the third case, the permutation is

cyclic. If V (C2k) = {v1, . . . , v2k}, then there are two non-zero cyclic permutations:
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Figure 3. The graph G of the saturated hydrocarbon cyclobutane C4H8.

(1, 2, . . . , 2k) and (2k, 2k − 1, . . . , 1). In this case the permutation can be written

as 2k − 1 transpositions and each summand will equal (−1)2k−1wk.

Thus detC2k = (−1)kw2k + 2(−1)2k−1wk + (−1)k. If k is even, then detC2k =

w2k−2wk+1 = (wk−1)2. If k is odd, then detC2k = −w2k+2wk−1 = −(wk−1)2.

In either case, for w ∈ [0, 1), detC2k 6= 0. �

Lemma 2.7. If G is a saturated hydrocarbon formed from a cycle with two pen-

dants attached to each vertex then the stellated graph G∗ with unit weight external

edges and internal edges with weight w ∈ [0, 1) has half positive and half negative

eigenvalues.

Proof. Let G be a saturated hydrocarbon formed from a cycle Ck with two pendants

attached to each vertex. Let G∗ be the stellation of G. G∗ will consist of a cycle

of k order-four cliques with two pendants adjacent to each clique. See Figures

3 and 4 for an example. Note that the pendant vertices of G remain pendant

vertices in G∗. The edges incident to these pendant vertices are external edges of

G∗ and have weight 1. Any non-zero summand of detG∗ must correspond to a

permutation that sends the index of any pendant vertex to the index of its unique

neighbor and, reciprocally, the index of any neighbor of a pendant to the index of

the pendant. The associated factors in the product are 1. Thus for a permutation

σ corresponding to a non-zero summand of detG∗ the only values which are not

forced are those corresponding to a cycle C2k which has edge weights alternating

between 1 and w ∈ [0, 1). That is, we have argued that detG∗ = detC2k. Lemma

2.6 implies that detC2k 6= 0 and, thus, detG∗ 6= 0. Lemma 2.2 then implies that

G∗ has half positive and half negative eigenvalues, which was to be shown. �

Theorem 2.8. If G is a unicyclic saturated hydrocarbon then its stellation G∗ has

half positive and half negative eigenvalues for any internal edge weight w ∈ [0, 1).

Proof. Lemma 2.7 implies that the statement is true for the smallest unicyclic sat-

urated hydrocarbons. So we will assume that the statement is true for unicyclic
7



Figure 4. The stellation G∗ of cyclobutane C4H8.

Figure 5. What remains of the stellation G∗ of cyclobutane C4H8

after the pendant edges and incident vertices are removed. The

external edges are highlighted.

saturated hydrocarbons with fewer than n vertices and prove the truth of the state-

ment for a unicyclic saturated hydrocarbon G with n vertices.

We can assume that G is not of the form of the graphs in Lemma 2.7, which

consist of cycles with two pendants attached to every vertex. By definition G has

a cycle; but there must be a vertex at distance greater than one from this cycle.

Let C be the cycle and v be a vertex at maximum distance from C. (For a pair

of vertices x, y, d(x, y) is the distance from x to y, the length of the shortest path

from x to y. For every vertex w we let d(w,C) = min{d(u,w) : u ∈ V (C)}; then

d(v, C) = max{d(w,C) : w /∈ V (C)}.) Now by imitating the argument of Lemma

2.4, we can assume that v′ is adjacent to three pendants a, b and c. We then let Gv

be the saturated hydrocarbon formed by deleting these pendants. Gv is unicyclic as

we are deleting pendants away from the cycle C. Since Gv is a unicyclic saturated

hydrocarbon with fewer than n vertices it follows that G∗v has half positive and

half negative eigenvalues and, hence, detG∗v 6= 0. And by imitating the argument

of Theorem 2.5 we can show that detG∗ = −detG∗v and, thus, that detG 6= 0.

Lemma 2.2 then implies that G∗ has half positive and half negative eigenvalues.

�
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Theorem 2.9. Any stellated saturated hydrocarbon with external edges of unit

weight and internal edges with weights w ∈ [0, c) has half positive and half negative

eigenvalues, for some molecule-dependent constant c > 0.

Proof. The statement is true for the graph K1,4 (corresponding to methane CH4),

representing the smallest saturated hydrocarbon: the stellation of this graph has

half positive eigenvalues and half negative eigenvalues. The statement is true for

acyclic and unicyclic saturated hydrocarbons. Theorems 2.5 and 2.8 show that any

constant will work in the former case, while 1 works in the latter case.

Let G be any saturated hydrocarbon. Let G∗ be its stellation with unit external

edge weights and internal edge weights w. The statement is true in the case where

w = 0: in this case the statement is equivalent to the fact that the eigenvalues of

a union of K2’s (a graph consisting of disjoint edges) are half “+1” and half “−1”.

We now argue that there is a constant c > 0 so that, for any w ∈ [0, 1), G∗ has half

positive and half negative eigenvalues.

Since we know that detG∗ is a continuous function of w and that detG∗ 6= 0

when w = 0 there must be some (non-degenerate) interval I ⊆ R containing 0

for which detG∗ 6= 0 for every w ∈ I. Then let c = sup I. The statement then

follows. �

We believe that the molecule-dependent constant c in Theorem 2.9 is in fact inde-

pendent of the molecule and, following the case of unicyclic saturated hydrocarbons,

is 1. Thus we conclude with the following conjecture. Further corroborative data

is contained in the next section.

Conjecture 2.10. Any stellated saturated hydrocarbon with external edges of unit

weight and internal edges with weights w ∈ [0, 1) has half positive and half negative

eigenvalues.

3. Data

B. McKays’ nauty program [16] was used to generate all of the saturated hydro-

carbons with up to 14 vertices. As a numerical experiment, the internal edges of the

stellations of these graphs were weighted w = 0.5, the external edges were weighted

1, and the eigenvalues were calculated. It was found that each of these molecules

has half positive and half negative eigenvalues, in agreement with Conjecture 2.10.

The data is presented in Table 1.

It is easy to see that there is a single saturated hydrocarbon with 5 atoms, and

none with 6 atoms. There is a unique saturated hydrocarbon with 7 atoms, pictured

in Figure 6, along with a representation of its stellation.
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Figure 6. The graph on the left is the unique saturated hydro-

carbon with 7 atoms. Its stellation is on the right. With internal

weight w = 0.5, the eigenvalues are (approximately) 2.46, 1.94,

1.72, 1.72, 1.62, 0.72, 0.69, 0.5, 0.5, 0.5, 0.5, -0.5, -0.72, -0.72,

-0.79, -1.27, -1.36, -1.5, -1.5, -1.5, -1.5, -1.5.

n Number of connected graphs with ∆ ≤ 4 Number of Saturated Hydrocarbons

5 21 1

6 78 0

7 353 1

8 1,929 5

9 12,207 12

10 89,402 44

11 739,335 190

12 6,800,637 995

13 68,531,618 6,211

14 748,592,936 45,116

Table 1. All counts are for non-isomorphic graphs.

4. Concluding Overview

Here a simple model for saturated hydrocarbons has been described, and some

first general features established, to reveal what every chemist “knows”—that alka-

nes are “stable”, which in the present language and model is to say that the MO

eigenvalues are divided with half positive and half negative. This result then is not

surprising—but rather serves as an example to indicate that further general math-

ematical results might well be achievable for this class of molecules, which offers

immensely greater number of examples, than does the class of benzenoids.
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The model utilized here has been described as arising in the early decades of

quantum chemistry. But it is somewhat amusing to note that the model we use

has some even earlier precedents—van’t Hoff’s model [25] has in effect the external

edges compressed to points. Also Sylvester’s [24] molecular graphs (of 1878) look

much like our stellated ones (though he seems to make a seeming “mistake” in

including only four out of the six internal bonds for each C atom) presumably

Clifford’s [3, 4] model is also similar (though there seems to be a less complete

description). Arguably these models may be viewed to involve a Clifford-algebraic

(antisymmetric) pairing for each external bond—not too unlike the later localized-

bonding VB model for the saturated hydrocarbons—something that would not take

definitive form for another half century. This in some sense disagrees with Biggs,

Lloyd, and Wilson’s statement [1] that Sylvester’s chemical ideas “went nowhere”.

Instead, these early ideas would give rise to the naming of mathematical “graph

theory” and ultimately rather indirectly facilitate chemical graph theory. But also

with Gordon and Alexejeff (who also thought of molecular modelling [11]) and

Clifford there was a development of representation theory for groups and group

algebras such as would ultimately enable the fundamental valence-bond theoretic

descriptions [21, 17, 18] of molecular structure—see particularly Weyl’s discussion

[26, Appendix D]. Simply put, these early mathematicians1 needed the vehicle of

quantum mechanics to make sense of their molecular ideas. Here though a MO

model approach for our saturated hydrocarbons has been taken, a VB-theoretic

development could also be imagined to be worthwhile.

Further, extension of the current work can be imagined. Development of our

simple model to understand the cycle-containing saturated hydrocarbons would be

of value. Also elaboration of the eigenvalue distribution (as a function of structure)

could be of value, particularly as regards the gap around 0. Yet also extensions to

deal with the case that the H- and C- atom orbitals are weighted differently would be

of value. And even further, hetero-atoms might be allowed in the carbon network—

one can imagine that rather general mathematical statements might be made via a

perturbed-MO approach, like that practiced [6] in the context of ordinary Hückel

theory. Indeed this approach should prove useful to account for the difference

between the site weights for C and H orbitals—the hetero-atom weights so treated in

this conventional perturbed MO theory being more significant than for our present

case (of C and H). Thence it seems that there remains much promise for chemical

1Amongst these “early mathematicians” one might also be tempted to include A. A. Cayley for

his somewhat more widely recognized work on alkane enumeration [2]. But though he evidently

learned of this matter from Sylvester [24], Cayley stuck with the ordinary molecular graph (as in

Figure 1), or yet more abbreviatedly with the H-deleted C-network graph.

11



graph theory, even in the context of understanding electronic structure in a general

way. See, also [15] for an even somewhat broader discussion of such prospects.
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