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ABSTRACT. Three bounds are proved for the independence number «
of a nontrivial connected graph: (1) a < n— % -1 @a> r+§ -1,

and 3)a < n— % —%, where n is the number of vertices of the graph,

C is the number of cut vertices, r is the radius, ¢ is the number of
pendants, and M is the median degree. The second and third bounds
are new. Equality is characterized for the first and third bounds.

1. INTRODUCTION

The independence number o = a(G) of a graph G is the cardinality of a
largest set of mutually non-adjacent vertices. It is a widely-studied NP-hard
graph invariant. Finding bounds for the independence number has been of
continuing interest. Lovész has written, “Deriving sharper and sharper
upper bounds, more and more insight could be gained into the nature of
independence number (a procedure vaguely reminiscent of the expansion of
a function into, say, a Fourier series)” [10]. Computational experiments sug-
gest that the Lovész theta function [9] is usually as good or better than any
other efficiently computable upper bound. No lower bound is equally good
and, in fact, for many graphs (even small graphs) no efficiently computahle
lower bound predicts the independence number. More than forty efficiently
computable bounds for the independence number of a graph can be found in
the compilation at http:// independencenumber . wordpress. com; further
non-efficiently computable bounds can be found in [13].
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In what follows, we state and prove three bounds for the independence
number of a nontrivial connected graph, describe their origins, and present
corollaries. Two of the bounds are new. Equality is characterized for two
of the bounds; in the remaining case, an infinite sharp class of graphs is
given. Throughout we use n = n(G) for the number of vertices of the graph
G. All graphs are considered to be simple and finite.

2. Cur-VERTICES UPPER BOUND

A vertex v is a cut-verter of G if the graph G — v, formed by deleting
v and all edges incident to v, has more components than G does. The
following bound parallels both a cut-vertices lower bound published by the
second author [11] as well as a cut-edges bound published by the second
author and collaborators [12]. Several proofs of the bound have been com-
municated to the authors. In particular, Fajtlowicz proved a statement
which is equivalent in the case of trees (see [1, G.pc #1]). The proof we
give is new and leads to our characterization of the case of equality.

We begin by defining the family of graphs where equality holds in the
theorem. A pendant vertex (or pendant) is a vertex incident to a single
edge. A branch point is a vertex of degree at least three.

Definition 2.1. We say that T is an odd tree if and only if it is an odd
order path or the distance between each pendant verter and each branch

point is odd.

Theorem 2.2. Let G be a nontrivial connected graph with independence
number o« and C cut-vertices. Then

c 1
<1n— — ——
o)) a<n 5 5

and equality holds if and only if G is an odd tree.

Proof. First note that the theorem is true for the connected graph on two
vertices, so we may assume that n > 3. Let T be a spanning tree of G
with e’ edges and corresponding invariants o’ and C’. Let I be a maximum
independent set in 7" containing all of the £ = n — C’ pendant vertices (if
a tree has at least three vertices and a maximum independent set does not
contain one of the pendants then it must contain its neighbor—these can
then be interchanged). Now, let E be the number of edges in T incident to
I. Note that since all pendants are in I, and every non-pendant in I has
degree at least two, E > 2(a’ — £) + £. Since o < ¢/ and C < €', we have:

2 n-1=€e>E>20d-0)+£=20-0=20—-n+C">2a—-n+C.

From this we get the desired inequality.

Concerning the case of equality, note that if &« = n — % - %, then the
first and last expressions from Inequality 2 are equal and so equality holds
throughout. In particular, n—1 = E = 2(a’—£)+£. From this we conclude



that for every spanning tree T, all vertices in I have degree one or degree
two and all edges of T are incident to a vertex in . Then I and T'\ I is a
bipartition where all branch points are in 7'\ I. Clearly then, the distance
from every pendant to every branch point is odd and so T is an odd tree.
Moreover, since every cut-vertex of G is a cut-vertex of each of its spanning
trees and C = C’, the sets of cut-vertices of T and G are identical.
Suppose that G and T" were not the same graph. Let zy be an edge of G
which is not in T. Then zy is contained in a unique cycle R of the graph
H =T + zy. Since pendants of T are its only non-cut-vertices, all but at
most two vertices of R are cut-vertices of H. Furthermore, the cut-vertices
of T" which belong to R must be branching points of T' (because they are
also cut-vertices of H). If there are at least two non-cut vertices of R,
they must be consecutive on R. Therefore we have two adjacent branching
points of T' on R, which is a contradiction because the distance from one
of them to a pendant would be even, or R is a triangle with the edge Ty
joining the two pendants x and y. This is also a contradiction because the
independence number of T is more than the independence number of G and
these have already been shown to be equal by the collapse of Inequality 2.
Conversely, suppose that G is an odd tree and we will show o = n— % —%.
If it is an odd path, then it is easily verified that equality holds. Proceeding
by induction on n, assume the implication is true for all odd trees with less
than n vertices. Form the graph G’ by deleting a pendant vertex and its
unique degree two neighbor w, if such a pendant exists. Then, o/ = a —1,
C'=C-2 and ' = n—2 yielding o = n — % — % as required (by
the inductive hypothesis since G’ is still an odd tree). Otherwise, no such
pendant exists and then we form the graph G’ by deleting a pendant vertex
whose unique neighbor is a branch point. Then, &’ = a—1, ¢’ = C, and
n' =n—1 yielding a = n— % —% as required, using the inductive hypothesis
since G’ is still an odd tree. a

3. Rapius AND PeENDANTS LOWER BOUND

The eccentricity of a vertex of a connected graph is the maximum dis-
tance from that vertex to any other. The radius r of a connected graph is
defined to be the minimum eccentricity of all of the vertices. In the 1980’s
Fajtlowicz’s computer program Grafitti conjectured that o > r for any con-
nected graph. This result is a consequence of the Induced Path Theorem
(namely, that every graph has an induced path with at least 2r —1 vertices)
which was proved in [5]; the result was also proved independently in [7],
and is implied by a more general result in [6].

Graffiti later conjectured that

(3) a>r+p—1,



where p denotes the path covering number, the minimum number of vertex
disjoint paths that can cover all the vertices of the graph. Since Lovész
noted (in [9]) that p is also a lower bound on independence number (but,
like r, the difference between this invariant and o can be arbitrarily large),
this conjecture seemed of interest. DeLaVina, F: ajtlowicz, and Waller then
found a family of counterexamples (described in [3]). After being informed
of a counterexample to this conjecture, Graffiti made the following two
conjectures.

Conjecture 3.1. (Graffiti) If a graph G is connected then
T
oz |3]+e
Conjecture 3.2. (Graffiti) If a graph G is connected then

p—1
(02 2 r 4+ T

Both of these conjectures were proven for trees but remain open in the
general case [3].

The main result is that o > r + % — 1 for any connected graph with ¢
pendant vertices. Notice that for trees (or any other graph with at least
two pendants), this is an improvement on o > r. It will be shown that
Conjecture 3.2, restricted to trees, follows as a corollary to this new bound.

The concept of an r-ciliate and the following theorem of Fajtlowicz pro-
vide very useful tools for investigating the relationship of the radius and
independence number of a graph.

Definition 3.3. An r-ciliate is a cycle with 2q (@ > 1) vertices and ap-
pended to each of these vertices is a path with r — q vertices. They are
denoted Coq r_q (see Figure 1).

Definition 3.4. A connected graph G is radius-critical if, for any non-cut
vertez v, the subgraph G — v formed by deleting v and the edges incident to
it has radius less than r.

The radius of an r-ciliate is r. It is casy to see that r-ciliates are bipartite
and that o(Coq,_q) = M%L‘Q = g(r — ¢+ 1). In the case where ¢ = 1,
the cycle is degenerate and identical to the path on two vertices. In this
case, the r-ciliate is a path on 2r vertices. Clearly, 7 > q. The extreme
cases are where ¢ = 1 and r = q. In the latter case the r-ciliate is a cycle
on 27 vertices.

Theorem 3.5. (Fujtlowicz, [6]) A connected graph with radius r is radius-
critical if and only if it is an r-ciliate.

This result implies that every connected graph has an induced r-ciliate,
and is the foundation for the characterization of those connected graphs



FIGURE 1. In the top row, from left to right, are the r-
ciliates Cogr—q With ¢ = 1, and r = 1,2 and 3, respec-
tively. In the second row are the r-ciliates Coq,r—q With
g =2, and 7 = 2,3 and 4, respectively.

whose independence number equals its radius [4]. An induced r-ciliate of
a connected graph G can be found by removing non-cut vertices until the
remaining (connected) subgraph is radius-critical. The result of this process
is not unique and we call the result “an” r-ciliate of G. Theorem 3.5 then
guarantees that every connected graph with radius = has an r-ciliate as an

induced subgraph.

Theorem 3.6. If G is a connected graph with radius r, independence num-
ber o, and £ pendant vertices, then

¢

Proof. Let G be a connected graph, and P be the set of pendant vertices.
Let Caq r—q be an r-ciliate of G. Recall that r > g > 1.

Cq,r—q is bipartite with 2¢(r — ¢ + 1) vertices. Let {B,W?} be a bipar-
tition of Caq r—q. P is the set of pendant vertices in G. Let Pg and Py be
the set of pendant vertices adjacent to vertices in B and W, respectively.
Let P’ be the set of pendants which are not included in either of these sets
and which do not belong to Coq r—gq; so P/ = P\ (PgU Py U Caq,r—q), and
P=PgUPyuUP.

There are three cases to consider.

Case I, ¢ = r. In this case the ciliate Cyqr—q is a cycle and has no
pendants. We can assume that |Pg| > |Pw|. So |PpUP'| > J%' = £. Note
that W U Pg U P’ is an independent set in G. So a > |W U PgU P'| >
[W|+ |PgUP| > &%—"—'Q—}-lgi =r+§2r+%—1, which was to be

shown.



In the following two cases the ciliate Cag,r—q has pendants. Some of
these pendants may be pendants in G and some may not. Let P = PN B.
So Pg C Pw. Similarly let Py, = PNW. So P}, C Pg. So P = Py U Pg.
We can assume that |Py UPgzUP'| > |PgU P, UP’|. So |Pw UPgUP'| >
Ll %. Note too that B U P U Pg U P’ is an independent set.

2
Case II, 7 > g > 1. So, in this case, we have

a2|BUPWUPI';UP'|=[B\P1'3|+|PWUP1’3UP'|Z|B|—|P}'3|+|£'—

2
> %—q+§=q(r—q+l)—q+§ 2(7‘—1)+§,
which was to be shown. The last inequality follows from the fact that
g(r—gq+1) —q>r —1, for real numbers r and ¢ with r > ¢ > 1.
Case III, ¢ = 1. In this case the r-ciliate is a path, and n(Caq ,—q) = 2r.
Since there is at most one pendant of G in B, |Pg| < 1.
Now it follows,

a>|BUPy UPgUP'|=|B\Pg|+|PwUPgUP|>

|P| > n(Caq,r—q) 4 ¢

— 4 = -1 —=7r—-1 —

which was to be shown. O

The bound is sharp for the ciliates Cpq1. These graphs have a = 2g,
r =g+ 1, and 2¢q pendant vertices.

Lemma 3.7. For any tree with £ pendants and path covering number p,
£>p+1.

Proof. The truth of the statement can easily be checked for small trees.
Assume the statement is true for trees with n vertices and suppose that T
is a tree with n 4 1 vertices. If T has a vertex which is adjacent to more
than one pendant, then let v be one of these pendants and 77 = T — v.
Clearly, p(T") > p(T) — 1 and (T") = £(T) — 1. Since £(T") > p(T") + 1 is
assumed to be true, £(T) > p(T) + 1 now follows immediately.

If no vertex is adjacent to more than one pendant and v is an endpoint
of a longest path of T', then v is necessarily adjacent to a vertex of degree
2. Again we let 7' = T — v, note that p(T") = p(T), £(T") = £(T), and the
result follows directly from the inductive hypothesis. ]

The following proposition follows immediately from Theorem 3.6 and
Lemma 3.7 and gives a new proof for Graffiti’s Conjecture 3.2 for trees.

Proposition 3.8. For any tree with radius r and path covering number p,

p—1
> _
a>Tr+ )



4. MEDIAN DEGREE UPPER BOUND

The median degree of a graph is defined in terms of the degree sequence
dy <ds < ... <d, of the graph. The median degree M is the middle degree
if n is odd (that is, M = d%) and the average of the middle degrees if
n is even (that is, M = %(d% +dz41)). DeLaVina’s Grafitti.pc program
made the following conjecture. See [2] for details about the program, and
[1] for a list of other conjectures of the program.

Theorem 4.1. If G is a nontrivial connected graph with independence
number a and median degree M then

M 1
2 = =
(5) asn-—- -3

Equality holds in this bound if and only if G is a star.

Proof. We will proceed in two cases. Suppose first that o < 7. In this case,
it is sufficient to show that 7 is bounded above by the right hand side of
the inequality in the theorem. To this end, we first observe that M < n—1,

from which we deduce,

=L
2

Do

<n-—

D3

Hence the result follows.

Now assume that o > 3. Let I be a maximum independent set. Each
vertex in I has degree at most n — «. Since more than half of the vertices
are in I, it is clear that M < n — . Thus,

M 1
a<n-M<n-— 5 X
which settles this case and proves the first part of the claim.

Now we turn to the case of equality in the bound. Clearly if a graph is
a star then equality holds. Suppose then that G is a nontrivial connected
graph and a = n — % — % Since G is a nontrivial connected graph the
degree of each vertex is at least one and M > 1. There are two cases to
consider.

First assume that o < %. Son— % — 1 < 2. Then n — 1 < M, which
is impossible.

So a > 7. Let I be a maximum independent set in G. Then, for every
v € I, the degree of v is no more than n — a. Since |I| > £, it follows that
M<n-—a=n—(n—¥% -1)=2% 41 Tt follows that M = 1 and, hence,
a=n—1. So G is a star. a

It should be mentioned that this median bound can be much better than,
for instance, the minimum degree upper bound (o < n — 4§, which is similar
in form). An example is a graph K, and a single vertex v connected to



some number of the vertices of K,,: whenever n > d(v) the median bound
will be better than the minimum degree bound.

The theorem can be improved for connected graphs which are not stars.
Before we state this improvement we define two families of graphs where

equality holds.

Definition 4.2. A complete split graph is a graph whose vertices can be
partitioned into an independent set I and a clique C such that every vertex
in I is adjacent to every verter in C. CS(m,n) denotes the unique complete
split graph whose vertices can be partitioned into an independent set I with
|I| =m and a cligue C with |C| = n.

Definition 4.3. A nova is a connected graph withn >4, o =n — 2, and
M=2.

This family of graphs includes graphs with two central vertices connected
to each of a circle of any number of vertices (hence the name) and also
includes the graphs C'S(n — 2,2). For our purposes, the important fact
about novas is that they are Konig-Egervdry (KE) graphs : graphs where
the independence number « and the matching number p sum to the number
of vertices of the graph. Maximum independent sets in KE graphs can be
identified efficiently [8]. To see that a nova G is a KE graph, consider the
following argument. Let I be a maximum independent set and let = and
y be the remaining vertices. Suppose there is no matching of the vertices
to a pair of vertices in I. Then z and y can only be adjacent to the same
vertex. Since the graph is assumed to be connected, it has three vertices,
contradicting the definition of a nova.

Theorem 4.4. If G is a connected non-star with independence number o
and median degree M then

(6) agn——%—l.

Equality holds in this bound if and only if the graph is a nova, a CS(k, k+1),
or CS(3,3).

Proof. Since G is connected and not a star, we have a <n —2. If M = 1,
we are done. So we may assume that M > 2. There are two cases to
consider.

First, assume that o < 3. It is easy to check that M # n — 1; thus
M<n-2and 2 <n-— % — 1, proving the result.

Second, assume that o > 2. Let I be a maximum independent set. Each
vertex in I has degree at most n—c. Since more than half of the vertices are
in I, it is clear that M < n—aq. Thus,since M > 2, a <n—-M < n—%—l,

Now we turn to the case of equality in the bound. It is easy to check
that if a graph is a nova, CS(k — 1,k), or CS(3,3), then equality holds.



Suppose then that G is a connected non-star with a = n — —]‘24 — 1. There

are three cases to consider.

In the first case, assume that a > 2. Let I be a maximum independent
set. Then, for every v € I, the degree of v is no more than n — a. Since
|I| > %, it follows that M < n—a_n—(n——i-—l) = M-1—1 This
implies that M < 2 and, hence, that M =2 and a =n —2. If n > 4 then,
by definition G is a nova. If n = 3 then G is a complete graph, which is
also given as CS(1,2).

In the second case, assume that o = §. It follows that n is even, the
median degree is the average of the middle degrees, n — 42"’— —1= % and,
hence, M = n — 2. Let I be a maximum independent set. So the median
degree M is no more than the average of the largest degree in I and n — 1.
Since the largest degree in I is no more than %, we get M < ( +n-1)
and, hence, n < 6. Since M > 2, we only consider graphs where n=4
(and, hence M = 2 and @ = 2) or n =6 (and M =4 and o = 3). When
n = 4 these graphs are novas. In the second case, let I be a maximum
independent set. So |I| = 3. These vertices can have degree at most 3.
Since M = 4 it follows that each vertex in V \ I must have degree 5. So
these vertices form a clique and each of them is adjacent to every vertex in
I. The graph is C'S(3,3).

In the third case, assume that & < . This implies that oo = n— —M -1«

. Son—2 < M and, since M < n, we have M =n—1. Subst1tut1ng again
we get 2o =n — 1. Let I be a maximum independent set in G. Note that,
since M = n—1 and I is an independent set, it follows that every vertex in
V'\I has degree n—1. So G[V'\I], the graph induced on V'\ I, is a complete
subgraph of G and G is the complete split graph CS(a, a + 1). O

It should be emphasized that equality in Theorem 4.4 can be checked
efficiently. This is largely a consequence of the previously mentioned facts
that the property of being Konig-Egervary can be checked efficiently and
maximum independent sets in these graphs can be found efficiently [8]. It
was argued above that novas are Kénig-Egervary graphs. Given a graph,
first check if it is a Konig-Egervary graph. If it is find a maximum inde-
pendent set I. If |I| = n — 2, then find the median degree. If M = 2, then
the graph is a nova.

If the graph is not a nova, then it may be a CS(k — 1, k). These graphs
are “almost” Koénig-Egervéry graphs: removing any vertex from the clique
on k vertices yields CS(k — 1,k — 1) which is a Kénig-Egervéary graph. For
each vertex v adjacent to each of the other vertices check if the graph formed
by removing v is Koénig-Egervary. If it is, find a maximum independent set
I, the complement C, and whether this graph is CS(k — 1,k — 1). If it
is then the original graph is CS(k — 1,k). At most —+— vertices must be
tested in order to make a determination.



5. OPEN PROBLEMS

Here is a summary, for the reader’s convenience, of problems mentioned
in the text that remain open. Recall that r is the radius, p is the path
covering number, and £ is the number of pendant vertices.

1) Graffiti’s Conjecture 3.1: If a graph G is connected then o > | Z| +
. . » 2
p. It is true for trees but remains open in the general case.
(2) Graffiti’s Conjecture 3.2: If a graph G is connected then o > 7 +
%1. It is true for trees but remains open in the general case.

(3) Characterize those graphs where o = % + 7 — 1. Some examples
were given above, but the general problem remains open.
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