
THE CRITICAL INDEPENDENCE NUMBER AND AN
INDEPENDENCE DECOMPOSITION

C. E. LARSON

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

VIRGINIA COMMONWEALTH UNIVERSITY

RICHMOND, VA 23284

CLARSON@VCU.EDU

804-828-5576

Abstract. An independent set Ic is a critical independent set if |Ic|−|N(Ic)| ≥
|J | − |N(J)|, for any independent set J . The critical independence number of

a graph is the cardinality of a maximum critical independent set. This num-

ber is a lower bound for the independence number and can be computed in

polynomial-time. Any graph can be decomposed into two subgraphs where the

independence number of one subgraph equals its critical independence num-

ber, where the critical independence number of the other subgraph is zero,

and where the sum of the independence numbers of the subgraphs is the inde-

pendence number of the graph. A proof of a conjecture of Graffiti.pc yields a

new characterization of König-Egervary graphs: these are exactly the graphs

whose independence and critical independence numbers are equal.

1. Introduction

An independent set of vertices in a graph is a set of vertices no two of which are

adjacent. A maximum independent set is an independent set of largest cardinality.

Finding a maximum independent set (MIS) in a graph is a well-known widely-

studied NP-hard problem [4]. It will be shown that the problem of finding a MIS

in a graph G can be decomposed into finding a MIS for two subgraphs, G[X] and

G[Xc], where X is a maximum critical independent set together with its neighbors,

and Xc = V (G) \X. The union of these independent sets is a MIS in G. There is

an efficient algorithm for finding both the set X and a MIS in G[X].

The following notation is used throughout: the vertex set of a graph G is V (G),

the order of G is n = n(G) = |V (G)|, the set of neighbors of a vertex v is NG(v)

(or simply N(v) if there is no possibility of ambiguity), the set of neighbors of a set

S ⊆ V (G) in G is NG(S) = ∪u∈SN(u) (or simply N(S) if there is no possibility

of ambiguity), the graph induced on S is G[S], and the independence number, the

cardinality of a MIS, is α(G). All graphs are assumed to be finite and simple.
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Figure 1. The vertices Ic = {a, b} form a (maximum cardinality)

critical independent set; according to Theorem 1.1, this set of ver-

tices can be extended to a maximum independent set of the graph.

The sets X = Ic ∪N(Ic) = {a, b, c, d} and Xc = V \X = {e, f, g}
induce a decomposition of the graph into a totally independence re-

ducible subgraph G[X] and an independence irreducible subgraph

G[Xc], according to Theorem 2.4.

An independent set of vertices Ic is a critical independent set if |Ic| − |N(Ic)| ≥
|J | − |N(J)|, for any independent set J . A graph may contain critical independent

sets of different cardinalities. A graph consisting of a single edge (K2, the complete

graph on two vertices) has critical independent sets of cardinalities 0 and 1. For

some graphs the only critical independent set is the empty set; K3 is an exam-

ple. A maximum critical independent set is a critical independent set of maximum

cardinality. It is easy to verify that, for any graph with at least three vertices, a

maximum critical independent set must contain all pendant vertices; so a maxi-

mum critical independent set is a generalization of the set of pendants. The critical

independence number of a graph G, denoted α′ = α′(G), is the cardinality of a max-

imum critical independent set. If Ic is a maximum critical independent set, and so

α′(G) = |Ic|, then clearly α′ ≤ α. Much of the interest in critical independent sets

is due to the following theorem.

Theorem 1.1. (Butenko & Trukhanov, [2]) If Ic is a critical independent set in a

graph G then there is a maximum independent set I in G such that Ic ⊆ I.

Butenko and Trukhanov also proposed the problem of finding a polynomial-time

algorithm for finding a maximum critical independent set in a graph [2]. Their

problem was solved by this author [5]; thus the critical independence number of a

graph can be computed in polynomial-time.

A graph is independence irreducible if α′ = 0. This means that the empty set

is the only critical independent set. It is easy to see that a graph is independence

irreducible if, and only if, the number of neighbors of any non-empty independent

set of vertices is greater than the number of vertices in the set. Complete graphs
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Figure 2. These graphs are totally independence reducible. In the

graph on the left, the set I = {a, b, c} is a maximum critical inde-

pendent set, and a maximum independent set; all bipartite graphs

are totally independence reducible. The graph on the right is not

bipartite; the set Ic = {a, b, c} is a maximum critical independent

set, and a maximum independent set. For both of these graphs

α = α′ = 3.

Figure 3. These graphs are independence irreducible: for any

non-empty independent set of vertices I in these graphs, |N(I)| >
|I|.

with at least three vertices, odd cycles, and fullerene graphs [5] are examples. A

graph is independence reducible if α′ > 0. This means that the graph is guaranteed

to have a non-empty critical independent set. A graph is totally independence

reducible if α′ = α; K2 and even cycles are examples.

The definition of a critical independent set is due to Zhang’s 1990 paper [9]; he

showed that these could be found in polynomial time. In 1994 Ageev [1] provided a

simpler algorithm, reducing the problem to that of finding a maximum independent

set in a bipartite graph. Then, after more than ten years elapsed, Butenko and
3



Trukhanov [2] proved their Theorem 1.1, thereby directly connecting the problem

of finding a critical independent set to that of finding a maximum independent set.

2. An Independence Decomposition

Finding a maximum independent set in a graph G and computing its indepen-

dence number are NP-hard problems. When attacking these problems it would be

useful to be able to decompose the problem into finding maximum independent

sets for the graphs induced by the sets in some partition of the vertex set V (G). It

will be shown that a non-trivial partition exists and, furthermore, that an efficient

algorithm exists for finding a MIS of at least one of the corresponding subgraphs.

Butenko and Trukhanov [2] noted that, if the independence number of a graph

is at least half the number of vertices then the graph will have a non-empty critical

independent set; the idea is that either a maximum independent set I will be a

critical independent set, since |I| − |N(I)| ≥ 0, or there must be a non-empty

independent set J such that |J | − |N(J)| > |I| − |N(I)|. In either case α′ > 0, and

the graph is independence reducible. Furthermore, this means that independence

irreducible graphs have “small” (less than n
2 ) independence numbers.

The following characterization of graphs whose independence numbers equal

their critical independence numbers will be needed in the proof of the main re-

sult.

Lemma 2.1. For any graph G with maximum critical independent set Ic, α = α′

if, and only if, Ic ∪N(Ic) = V (G).

Proof. Let G be a graph. Suppose first that α(G) = α′(G). Let Ic be a maximum

critical independent set of G. So α′ = |Ic|. Suppose Ic ∪N(Ic) is a proper subset

of V (G). Let v ∈ V \ (Ic ∪ N(Ic)). Then Ic ∪ {v} is an independent set and

α(G) ≥ |Ic|+ 1 = α′(G) + 1 > α′(G), contradicting the fact that α(G) = α′(G).

Suppose now that Ic is a maximum critical independent set and Ic ∪ N(Ic) =

V (G). Theorem 1.1 implies that there is a maximum independent set I of G, such

that Ic ⊆ I. If there is a vertex v ∈ I \ Ic then, by assumption, v ∈ N(Ic). But

then v is adjacent to some vertex in Ic and I is not independent. So I = Ic and

α = α′. �

Since a maximum critical independent set of a graph can be found in polynomial-

time, Lemma 2.1 implies that whether a graph has the property that α = α′ (that

is, whether the graph is totally independence irreducible) can be determined in

polynomial-time.
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A matching in a graph is a set of non-incident edges. The matching number µ

is the cardinality of a largest matching. A matching M is a matching of a set X

into a disjoint set Y if every vertex in X is incident to some edge in M and each

of these edges is incident to a vertex in Y ; it is not required that every vertex in Y

be incident to an edge in M .

Lemma 2.2. (The Matching Lemma, Larson, [5]) If Ic is a critical independent set

of G, then there is a matching of the vertices N(Ic) into (a subset of) the vertices

of Ic.

The proof of the Matching Lemma is essentially an application of Hall’s Theorem.

Lemma 2.3. If G is a graph with critical independent sets Ic and Jc, where J =

Jc \ (Ic ∪N(Ic)), and I = Ic ∪ J then,

(1) |Ic ∩N(Jc)| = |Jc ∩N(Ic)|,
(2) |J | ≥ |N(Jc) \ (Ic ∪N(Ic)|, and

(3) I is a critical independent set.

Proof. The Matching Lemma 2.2 guarantees that there is a matching from the

vertices in N(Jc) to (a subset of) the vertices in Jc and from the vertices in N(Ic)

to (a subset of) the vertices in Ic. For the remainder of the proof the reader may

usefully refer to Figure 4. Since the vertices in Ic∩N(Jc) ⊆ N(Jc) must be matched

to vertices in N(Ic) ∩ Jc, and the vertices in N(Ic) ∩ Jc ⊆ N(Ic) must be matched

to vertices in Ic ∩N(Jc), it follows that |Ic ∩N(Jc)| = |Jc ∩N(Ic)|, proving (1).

Applying the Matching Lemma again, we have that N(Jc) is matched into Jc,

that is, every vertex in N(Jc) can be paired with a distinct adjacent vertex in Jc.

Notice that a vertex v in N(Jc) \ (Ic ∪ N(Ic)) cannot be matched to a vertex in

Jc ∩N(Ic) under any matching, as the proof of (1) guarantees that these are only

matched to vertices in Ic ∩N(Jc). Furthermore, a vertex v in N(Jc) \ (Ic ∪N(Ic))

cannot be matched to a vertex w in Ic ∩ Jc. If it were, then since w ∈ Ic and v is

adjacent to w, it follows that v ∈ N(Ic), contradicting the fact that v /∈ N(Ic). Thus

vertices in N(Jc) \ (Ic ∪N(Ic)) can only be matched to vertices in Jc \ (Ic ∪N(Ic)).

Since every vertex in N(Jc)\(Ic∪N(Ic)) is matched to a vertex in Jc \(Ic∪N(Ic)),

it follows that |J | = |Jc \ (Ic ∪N(Ic))| ≥ |N(Jc) \ (Ic ∪N(Ic))|, proving (2).

I = Ic ∪ J . Since Ic and J are independent, and J = Jc \ (Ic ∪ N(Ic)), I is

independent. Since Ic and J are disjoint, |I| = |Ic|+ |J |. N(I) ⊆ N(Ic) ∪ [N(Jc) \
(Ic ∪ N(Ic))] and |N(I)| ≤ |N(Ic)| + |N(Jc) \ (Ic ∪ N(Ic))|. So, |I| − |N(I)| ≥
(|Ic| + |J |) − (|N(Ic)| + |N(Jc) \ (Ic ∪ N(Ic))| = (|Ic| − |N(Ic)|) + (|J | − |N(Jc) \
(Ic ∪N(Ic))|). Since (2) implies that the last term is non-negative, it follows that
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Ic N(Ic)

N(Jc)

JcIc ∩ Jc

Ic ∩N(Jc) N(Ic) ∩N(Jc)

N(Ic) ∩ Jc Jc \ (Ic ∪N(Ic))

Figure 4. A useful figure for following the proofs of Lemma 2.3

and Theorem 2.4. The figure is a schematic of the relationship

between critical independent sets Ic and Jc and their neighbors.

The set I = Ic ∪ J = Ic ∪ Jc \ (Ic ∪N(Ic)) is shaded.

|I| − |N(I)| ≥ |Ic| − |N(Ic)| and, thus, that I is a critical independent set, proving

(3). �

Theorem 2.4. For any graph G, there is a unique set X ⊆ V (G) such that

(1) α(G) = α(G[X]) + α(G[Xc]),

(2) G[X] is totally independence reducible,

(3) G[Xc] is independence irreducible, and

(4) for every maximum critical independent set Jc of G, X = Jc ∪N(Jc).

Proof. Let Ic be a maximum critical independent set of G. Let X = Ic∪N(Ic) and

Xc = V (G) \X. Ic is an independent set in G[X].

Suppose Ic is not a maximum independent set in G[X]. Let Y be an independent

set of G[X] such that |Y | > |Ic|. Let YI = Y ∩ Ic and YN = Y ∩ N(Ic). So

Y = YI∪YN , |YI |+|YN | = |Y |, and |YI | > |Ic|−|YN |. Note that N(YI) ⊆ N(Ic)\YN .

Then, |YI | − |N(YI)| ≥ |YI | − |N(Ic) \ YN | > (|Ic| − |YN |) − |N(Ic) \ YN | = |Ic| −
(|YN |+ |N(Ic) \ YN |) = |Ic| − |N(Ic)|. Since YI is an independent set, Ic cannot be

a critical independent set of G, which contradicts the assumption that it is. Thus,

Ic is a maximum independent set and α(G[X]) = |Ic|.
6



It follows from Theorem 1.1 that Ic is contained in a maximum independent

set I of G. So α(G) = |I|. I \ Ic is an independent set in Xc. So α(G[Xc]) ≥
|I \ Ic|. Suppose there is an independent set I ′ ⊆ Xc such that |I ′| > |I \ Ic|.
By construction, no vertex in Ic is adjacent in G to a vertex in Xc. Thus, no

vertex in Ic is adjacent to a vertex in I ′. Thus, Ic ∪ I ′ is an independent set in G,

and α(G) ≥ |Ic ∪ I ′| = |Ic| + |I ′| > |Ic| + |I \ Ic| = |I| = α(G), a contradiction.

Thus, I \ Ic is a maximum independent set in G[Xc], and α(G[X]) + α(G[Xc]) =

|Ic|+ |I \ Ic| = |I| = α(G), proving (1).

Now suppose Ic is not a critical independent set in G[X]. Let Y be a minimum

critical independent set of G[X]. So |Y |−|NG[X](Y )| > |Ic|−|N(Ic)|. Let YI = Y ∩
Ic and YN = Y ∩N(Ic). (Note that N(Ic) is unambiguous as NG(Ic) = NG[X](Ic).)

Let Y ′N ⊆ Ic be the set of neighbors of YN in Ic. It follows from the Matching

Lemma 2.2 that there is a matching of the vertices in NG[X](Y ) to (a subset of)

the vertices in Y . Since Ic is an independent set, and Y ′N ⊆ Ic, the vertices in Y ′N

must be matched to vertices in YN . Thus, |YN | ≥ |Y ′N |.
Suppose |YN | = |Y ′N |. Then |YI | − |N(YI)| = (|YI |+ |YN |)− (|N(YI)|+ |YN |) =

|Y |−(|N(YI)|+ |Y ′N |) ≥ |Y |−|NG[X](Y )|, implying that YI is a critical independent

set of G[X]. Since YI ⊆ Y , and Y is a minimum critical independent set, it

follows that YI = Y , and YN = ∅. Since YI ⊆ Ic, NG(YI) = NG[X](YI), and

|YI | − |NG(YI)| ≥ |Y | −NG[X](Y )| > |Ic| − |NG(Ic)|, contradicting the fact that Ic
is a critical independent set in G.

So |YN | > |Y ′N |. But then, for I = Ic\Y ′N , |I|−|NG(I)| = |Ic\Y ′N |−|N(Ic)\YN | =
|Ic| − |Y ′N | − (|N(Ic)| − |YN |) = (|Ic| − |N(Ic)|) + (|YN | − |Y ′N |). Since the last term

is positive, it follows that |I|− |NG(I)| > |Ic|− |N(Ic)|, again contradicting the fact

that Ic is a critical independent set in G. Thus, Ic is a critical independent set in

G[X]. Since Ic∪N(Ic) = X, Ic is a maximum critical independent set in G[X], and

α′(G[X]) = |Ic|. So α(G[X]) = α′(G[X]) = |Ic| and G[X] is totally independence

reducible, proving (2).

Suppose that G[Xc] contains a non-empty critical independent set Z. So |Z| ≥
|NG[Xc](Z)|. No vertex in Ic is adjacent to any vertex in Z as N(Ic) ⊆ X and

Z ⊆ Xc. So Ic ∪ Z is an independent set in G. Furthermore, |N(Ic ∪ Z)| =

|N(Ic)| + |NG[Xc](Z)|. So, |Ic ∪ Z| − |NG(Ic ∪ Z)| = (|Ic| + |Z|) − (|N(Ic)| +

|NG[Xc](Z)|) = (|Ic| − |N(Ic)|) + (|Z| − |NG[Xc](Z)|) ≥ |Ic| − |N(Ic)|, contradicting

the fact that Ic is a maximum critical independent set of G. Thus, G[Xc] does

not contain a non-empty critical independent set, α′(G[Xc]) = 0, and G[Xc] is

irreducible, proving (3).
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Now suppose that Jc is a maximum critical independent set of G. Thus, since

Jc and Ic are both maximum critical independent sets, |Jc| = |Ic|. Since they are

both critical, |Jc| − |N(Jc)| = |Ic| − |N(Ic)|. It then follows that |N(Jc)| = |N(Ic)|.
Let J = Jc \ (Ic ∪N(Ic)). So Ic ∪ J is an independent set. Lemma 2.3 implies that

Ic∪J is a critical independent set of G. But, since Ic ⊆ Ic∪J and Ic is a maximum

critical independent set of G, J = ∅. A parallel argument yields that I = ∅.
The Matching Lemma 2.2 implies that there is a matching from the vertices in

N(Jc) into the vertices in Jc. Lemma 2.3 implies that |Ic∩N(Jc)| = |Jc∩N(Ic)|. So

if v ∈ N(Jc)\(N(Jc)∩Ic), it must be matched to a vertex in Jc\(Jc∩N(Ic) = Ic∩Jc

and, thus, v ∈ N(Ic ∩ Jc) ⊆ N(Ic) ∩ N(Jc). So every vertex in N(Jc) is either in

N(Jc) ∩ Ic or in N(Jc) ∩N(Ic), which implies that N(Jc) ⊆ Ic ∪N(Ic).

So both Jc and N(Jc) are subsets of Ic ∪ N(Ic). Since |Jc| + |N(Jc)| = |Ic| +
|N(Ic)|, it follows that Jc ∪N(Jc) = Ic ∪N(Ic) = X, proving (4).

The uniqueness of a set X ⊆ V (G) satisfying the four conditions of the theorem

follows immediately from (4).

�

3. An application: König-Egervary Graphs

The independence number, the critical independence number, order, and the

matching number of a graph are α, α′, n and µ, respectively. A vertex cover in a

graph is a set of vertices such that each edge in the graph is incident to at least one

of the vertices in the cover. The vertex covering number τ is the cardinality of a

smallest vertex cover. One of the Gallai Identities is that, for any graph, α+ τ = n

[7, p. 2]. For bipartite graphs, α+µ = n (this is the König-Egervary theorem, [7]).

A König-Egervary graph (or simply KE graph) is a graph that satisfies this identity.

There are non-bipartite KE graphs: the right graph in Figure 2 is an example. KE

graphs were first characterized by Deming [3] and Sterboul [8] in 1979. A graph has

a perfect matching if there is a matching where every vertex of the graph is incident

to some edge in the matching (and thus µ = n
2 ). Deming showed that the problem

of determining whether a graph G was KE or not could be reduced to the problem

of determining whether a certain extension G′ of G with a perfect matching is a KE

graph. With respect to a matching M , a blossom is an odd cycle where half of one

less than the number of edges in the cycle belong to M . In this case there must be

a unique pair of edges in the cycle which do not belong to M . The vertex incident

to these two edges is the blossom tip. A blossom pair is a pair of blossoms whose

tips are joined by a path with an odd number of edges, beginning and ending with

with edges in M and alternating between edges that are in M and those that are
8



not. Deming proved that if G is a graph with a perfect matching M then, G is a

KE graph if, and only if, G contains no blossom pairs. Sterboul gave an equivalent

characterization.

Ermelinda DeLaVina’s program Graffiti.pc conjectured that, for any graph, α =

α′ if, and only if, τ = µ. This conjecture is proved here for the first time and yields

a new characterization of KE graphs. The Graffiti.pc conjecture can be rewritten:

for any graph, α = α′ if, and only if, α+µ = n; or, for a graph G, α(G) = α′(G) if,

and only if, G is a KE graph. Since a graph was defined to be totally independence

reducible if α′ = α, Graffiti.pc’s conjecture can also be restated as: a graph G is

totally independence reducible if, and only if, G is a KE graph. On the face of

it, there is no connection between the non-existence of blossom pairs in a graph

and the graph having the property that its independence and critical independence

numbers are equal; it is not obvious that this characterization of KE graphs and

the Deming-Sterboul characterization are equivalent.

Theorem 3.1. (Graffiti.pc #329) For any graph, α = α′ if, and only if, τ = µ.

Proof. Suppose that α(G) = α′(G). It will be shown that τ(G) = µ(G) or, equiva-

lently, that n− α(G) = µ(G).

Let I be a maximum critical independent set. So α(G) = α′(G) = |I|. Since

n−α(G) = |N(I)|, it remains to show that µ(G) = |N(I)|. Since I is independent,

µ(G) ≤ |N(I)|. It only remains to show that µ(G) ≥ |N(I)|. Since I is a critical

independent set, the Matching Lemma 2.2 implies that there is a matching from

N(I) into I and, thus, that µ(G) ≥ |N(I)|.
Suppose now that τ(G) = µ(G) or, equivalently, that n − α(G) = µ(G). It will

be shown that α(G) = α′(G). α′(G) ≤ α(G). Suppose α′(G) < α(G). Let Ic be

a maximum critical independent set. Theorem 1.1 guarantees the existence of a

maximum independent set J such that Ic ⊆ J . Since µ(G) = n(G) − α(G), J is

independent, and |V \ J | = n(G) − α(G), there is a matching from V \ J into J .

This implies that each vertex in N(J) \N(Ic) is matched to a vertex in J \ Ic. So

|J \ Ic| ≥ |N(J) \N(Ic)| .

It will now be shown that |J | − |N(J)| ≥ |Ic| − |N(Ic)|, implying that Ic is

not a maximum critical independent set, as it was assumed to be. |J | − |N(J)| =
(|J\Ic|+|Ic|)−(|N(J)\N(Ic)|+|N(Ic)|) = (|Ic|−|N(Ic))+(|J\Ic|−|N(J)\N(Ic)|) ≥
|Ic| − |N(Ic)|. It follows that Ic = J , |Ic| = |J |, and α′(G) = α(G), which was to

be shown. �
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Now Theorem 2.4 can be restated in an interesting and potentially fruitful way.

Corollary 3.2. For any graph G, there is a unique set X ⊆ V (G) such that

(1) α(G) = α(G[X]) + α(G[Xc]),

(2) G[X] is a König-Egervary graph,

(3) for every non-empty independent set I in G[Xc], |N(I)| > |I|, and

(4) for every maximum critical independent set Jc of G, X = Jc ∪N(Jc).
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