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Abstract. Given a connected bipartite graph G, we describe a procedure which enumerates and
computes all graphs H (if any) for which there is a direct product factorization G ∼= H × K2. We
apply this technique to the problems of factoring even cycles and hypercubes over the direct product.
In the case of hypercubes, our work expands some known results by Brešar, Imrich, Klavžar, Rall,
and Zmazek [Finite and infinite hypercubes as direct products, Australas. J. Combin., 36 (2006),
pp. 83–90, and Hypercubes as direct products, SIAM J. Discrete Math., 18 (2005), pp. 778–786].

Key words. graph direct product, graph factorization, bipartite graphs, hypercubes

AMS subject classification. 05C60

DOI. 10.1137/090751761

1. Introduction. A graph G = (V (G), E(G)) in this paper is finite and may
have loops, but not multiple edges. The direct product of two graphs G and H is the
graph G×H whose vertex set is the Cartesian product V (G)×V (H) and whose edges
are E(G ×H) = {(g, h)(g′, h′) : gg′ ∈ E(G), hh′ ∈ E(H)}. The graphs G and H are
called factors of the product.

If I is the graph with one vertex and one loop, then I × G ∼= G for any graph
G. A graph G is said to be prime with respect to × if whenever G ∼= H × K, one
factor is isomorphic to I and the other is isomorphic to G. A fundamental result due
to McKenzie [7] (see also Imrich [6]) implies that any connected non-bipartite graph
has a unique prime factorization over the direct product. It is known that bipartite
graphs are not uniquely prime factorable, but the ways that they can decompose into
prime factors is largely unexplored.

This paper addresses the ways that a bipartite graph G can be factored as a
product G ∼= H × K2 of a graph H with the complete graph K2. This is in some
ways analogous to factoring an even integer g into a product g = h · 2, except that
for graphs the factorization need not be unique. For example, Figure 1 shows that
the 10-cycle G = C10 can be prime factored as G ∼= H ×K2 where H can be either
the path P5 with loops at each end, or the cycle C5. As we shall see, in general
such graphs H arise in a simple way from the automorphism conjugacy classes of the
involutions that reverse the bipartition of G. We will apply our results to the problem
of extracting K2 factors from even cycles and hypercubes.

We note that our current paper falls partly under the umbrella of [1]. Given
arbitrary graphs H and K, with K bipartite, [1] classifies all the graphs H ′ for which
H ×K ∼= H ′×K. Replacing K with K2 would seem to cover the topic of the current
paper. However [1] employs a somewhat complex construction called the factorial of
H , and thus in general the graphs H ′ appear to be difficult to compute. By contrast
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Fig. 1. Two different prime factorizations of G = C10.

it turns out (as we shall see) that if K = K2 the situation becomes much simpler, and
the factorial is not required.

The reader is assumed to have some experience with direct products. See [3] for
the definitive survey.

2. Notational preliminaries. The ideas in this paper require careful attention
to how automorphisms of a bipartite graph act on the partite sets, and therefore we
begin by laying out some notation that is specially catered to this.

Suppose G is a connected bipartite graph with partite sets X and Y . We regard
the bipartition as an ordered pair (X,Y ), so (Y,X) is a different bipartition. In
discussing G we have in mind a definite bipartition (X,Y ). Any automorphism α ∈
Aut(G) must respect the bipartition in the sense that either α(X) = X and α(Y ) = Y ,
or α(X) = Y and α(Y ) = X . We call an automorphism of the first type a preserving
automorphism and denote the collection of them as

PA(G) = {α ∈ Aut(G) : α(X) = X,α(Y ) = Y }.

Similarly, the set of reversing automorphisms is

RA(G) = {α ∈ Aut(G) : α(X) = Y, α(Y ) = X},

so Aut(G) is the disjoint union PA(G) ∪ RA(G). Of course RA(G) may be empty,
but PA(G) at least contains the identity. An involution of G is an automorphism α
of G such that α2 = id. As above, we divide the set of involutions of G into the set
of preserving involutions and the set of reversing involutions:

PI(G) = {α ∈ PA(G) : α2 = id},
RI(G) = {α ∈ RA(G) : α2 = id}.

(We remark in passing that reversing involutions play a key role in [2].) Given any
α ∈ Aut(G), we denote its restrictions to X and Y as αX and αY , respectively. We
agree to identify the codomains of αX and αY with their images, so that both αX
and αY are bijective.

It will be convenient to regard any automorphism α ∈ Aut(G) as an ordered pair
α = (αX , αY ). Sometimes we will simply write α = (α, α) with the understanding
that the first component is the restriction to X and the second is the restriction to
Y . The following inversion formulas follow immediately:

if α ∈ PA(G), then α−1 =
(
α−1
X , α−1

Y

)
,

if α ∈ RA(G), then α−1 =
(
α−1
Y , α−1

X

)
.
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Fig. 2. Examples of G and Gα.

Given automorphisms α and β, their composition αβ obeys the following rules:

if β ∈ PA(G), then αβ = (αX , αY )(βX , βY ) = (αXβX , αY βY ),

if β ∈ RA(G), then αβ = (αX , αY )(βX , βY ) = (αY βX , αXβY ).

We put V (K2) = {0, 1}. For each ε ∈ V (K2) we say ε = 1− ε, so 0 = 1 and 1 = 0,
and the map ε &→ ε is the reversing involution of K2. Also, let us agree now that
whenever we are discussing an edge xy of G, the vertex on the left (x) is assumed to
be in X , and the vertex on the right (y) is assumed to be in Y . This convention is
helpful when we write our automorphisms in pair form α = (α, α).

3. Extracting a K2 factor. We now show how to factor a bipartite graph G
as H × K2, provided such a factoring is possible. The following construction is a
key ingredient. Given a reversing involution α ∈ RI(G), we construct a graph Gα as
follows:

V (Gα) = X,

E(Gα) = {xα(y) : xy ∈ E(G), x ∈ X, y ∈ Y }.

Notice that Gα has half as many vertices as G. As an example, consider G = C10

which is illustrated in Figures 2(a) and 2(b). The upper parts of each figure show G
with vertices X colored black and vertices Y colored white. In each case a reversing
involution α is indicated. The figures at the bottom show the corresponding graphs
Gα.

We note in passing to the reader who may be bothered by the apparent arbitrary
choice of X rather than Y as a vertex set for Gα, that we could equally well define a
graph Gα with V (Gα) = Y and E(Gα) = {α(x)y : xy ∈ E(G), x ∈ X , y ∈ Y }. Then
α restricts to an isomorphism Gα → Gα. We will thus be content to work with Gα

instead of Gα.
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Our interest in the graphs Gα can be explained by comparing Figures 1 and 2.
In Figure 2, the two graphs Gα are precisely the two factors H in Figure 1 which give
G ∼= H ×K2. Indeed, the following proposition shows that this is a general property.

proposition 1. If G is a connected bipartite graph, then G ∼= H × K2 if and
only if H ∼= Gα for some reversing involution α ∈ RI(G).

Proof. Suppose G ∼= H × K2. Then there is certainly no harm in assuming
G = H ×K2, and we do so. Thus V (G) = V (H)× {0, 1} and E(G) = {(h, 0)(h′, 1) :
hh′ ∈ E(H)}. The partite sets of G are X = V (H)×{0} and Y = V (H)×{1}. Notice
that the map α : (h, ε) &→ (h, ε) is a reversing involution in RI(G). By definition of
Gα we have V (Gα) = V (H)×{0} and E(Gα) = {(h, 0)(h′, 0) : hh′ ∈ E(H)}. Clearly
the map ϕ : V (Gα) → V (H) defined as ϕ(h, 0) = h is an isomorphism from Gα to H .

Conversely, suppose α ∈ RI(G). We just need to show G ∼= Gα ×K2. As usual,
we denote the bipartition of G as (X,Y ). Define a map ϕ : V (G) → X × {0, 1} as
ϕ = ((id, 0), (α, 1)). (That is, ϕ sends any x ∈ X to (x, 0) and any y ∈ Y to (α(y), 1).)
This is bijective, and moreover

xy ∈ E(G) ⇐⇒ xα(y) ∈ E(Gα)

⇐⇒ (x, 0)(α(y), 1) ∈ E(Gα ×K2)

⇐⇒ ϕ(x)ϕ(y) ∈ E(Gα ×K2),

so ϕ : G → Gα ×K2 is an isomorphism.
So we now know that the graphs H for which G ∼= H ×K2 are precisely H ∼= Gα

for α ∈ RI(G). But the correspondence between such graphs H and the elements of
RI(G) is not necessarily bijective. It is quite possible that we could have Gα ∼= Gβ

for distinct α and β. Our next proposition explains how such α and β are related.
In reading the proof the reader is advised to keep in mind that β2 = id implies that
xx′ ∈ E(Gβ) if and only if β(x)x′ ∈ E(G) and xβ(x′) ∈ E(G).

proposition 2. If α, β ∈ RI(G), then Gα ∼= Gβ if and only if σασ−1 = β for
some σ ∈ Aut(G).

Proof. Suppose Gα ∼= Gβ . Take an isomorphism σ̃ : Gα → Gβ so, in particular,
σ̃ is a bijection from X to X . Define σ : V (G) → V (G) as σ = (βσ̃, σ̃α). It is easy
to check that σ is bijective, and it is an automorphism of G as follows. (Recall that
by convention any edge xy of G is assumed to satisfy x ∈ X and y ∈ Y .)

xy ∈ E(G) ⇐⇒ xα(y) ∈ E(Gα)

⇐⇒ σ̃(x)σ̃α(y) ∈ E(Gβ)

⇐⇒ βσ̃(x)σ̃α(y) ∈ E(G)

⇐⇒ σ(x)σ(y) ∈ E(G).

Therefore σ ∈ Aut(G). In fact σ = (βσ̃, σ̃α) ∈ RA(G) because α, β ∈ RA(G). To
complete the first part of the proof, observe that

σασ−1 = (βσ̃, σ̃α)(α, α)
(
ασ̃−1, σ̃−1β

)

= (βσ̃, σ̃α)
(
αασ̃−1, ασ̃−1β

)

=
(
βσ̃αασ̃−1, σ̃αασ̃−1β

)
= (β, β) = β.
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For the converse assume that α, β ∈ RI(G) and σασ−1 = β for some σ ∈ Aut(G).
Then σα = βσ. We consider two cases according to whether σ is in PA(G) or RA(G).

Case 1. Suppose σ ∈ PA(G). Then xx′ ∈ E(Gα) ⇐⇒ xα(x′) ∈ E(G) ⇐⇒
σ(x)σα(x′) ∈ E(G) ⇐⇒ σ(x)βσ(x′) ∈ E(G) ⇐⇒ σ(x)σ(x′) ∈ E(Gβ). Thus σ
restricts to an isomorphism from Gα to Gβ .

Case 2. Suppose σ ∈ RA(G). Then xx′ ∈ E(Gα) ⇐⇒ xα(x′) ∈ E(G) ⇐⇒
σ(x)σα(x′) ∈ E(G) ⇐⇒ σ(x)βσ(x′) ∈ E(G) ⇐⇒ βσ(x)σ(x′) ∈ E(G) ⇐⇒
βσ(x)βσ(x′) ∈ E(Gβ). Thus βσ restricts to an isomorphism from Gα to Gβ .

The previous two propositions tell us how to compute, up to isomorphism, all
graphs H for which G = H ×K2: Compute RI(G) and determine its orbits under the
action of Aut(G) by conjugation. Then take a representative α from each orbit and
form the graphs H = Gα. We summarize this as a theorem.

Theorem 1. Suppose G is a connected bipartite graph. The set of all graphs H
for which G ∼= H ×K2 can be found with the following process.

1. Compute RI(G). If RI(G) = ∅, then K2 cannot be factored from G. Otherwise
proceed as follows.

2. The group Aut(G) acts on RI(G) by conjugation. Take representatives α1, α2,
. . . , αn of the orbits of this action.

3. The graphs H for which G ∼= H ×K2 are precisely H = Gα1 , Gα2 , . . . , Gαn .
We now illustrate this theorem by carrying out the process with even cycles and
hypercubes.

4. First example: Factoring even cycles. As an application of these ideas,
we examine the problem of factoring cycles Cn where n = 2q. Imagine Cn as a regular
n-gon centered at the origin of the plane. We can identify Aut(Cn) with the dihedral
group D2n. In what follows we will need to know what the conjugacy classes of D2n

look like; thus we begin with a little notation. First label the vertices of the n-gon
consecutively as 1, 2, 3, . . . , n in the clockwise direction. Let µ denote the reflection
about the line passing through the center of the n-gon and the vertex 1, and let ρ be
the clockwise rotation of 2π

n radians. Clearly each element of D2n can be expressed as
a product µiρj for some 0 ≤ i ≤ 1 and 0 ≤ j ≤ 2q−1. Since n is even we note that the
center of D2n consists of two elements, the identity and the rotation ρq; thus they are
each in conjugacy classes by themselves. A few simple calculations show that there
are two conjugacy classes of reflections, {µρ2j : 1 ≤ j ≤ q} and {µρ2j−1 : 1 ≤ j ≤ q},
and q conjugacy classes of rotations of the form {ρk, ρ−k} for 1 ≤ k ≤ q.

To apply our results, we need to investigate the involutions of Cn. Any non-
identity involution of Cn is either a reflection or the rotation ρq by π radians. Half of
the reflections (the ones that fix two vertices) are in PI(Cn), and the other half (the
ones that fix no vertices) are in RI(Cn). The involution ρq is in RI(Cn) if and only if
q is odd. Therefore the structure of RI(Cn) depends on the parity of q. We consider
each case separately.

If q is even, RI(Cn) consists of q reflections. Since all of these reflections are
conjugate to each other, Cn factors uniquely as Cn

∼= Cα
n × K2, where α is any

element of RI(Cn). One quickly checks that (as in Figure 2(a)) Cα
n is the path of

length q with loops at each end. This graph is easily seen to be prime, so we have a
prime factorization Cn

∼= H×K2, where H is a length-q path with loops at each end.
This is the only way Cn can be factored with a K2 as a factor.

If q is odd, then RI(Cn) consists of q reflections plus the rotation ρq. We know that
the reflections are all conjugate to each other and that the rotation lies in a separate
conjugacy class. Thus Cn can factor in exactly two ways, either as Cn

∼= Cα
n ×K2,
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Fig. 3. Examples of Q3 and Qα
3 .

where α is a reflection, or as Cn
∼= Cρq

n ×K2. As before, Cα
n is a length-q path with

loops at each end. It is easy to verify that Cρq

n
∼= Cq, giving Cn

∼= Cq ×K2.

5. Second example: Factoring hypercubes. The n-dimensional cube Qn is
the graph for which V (Qn) is the set of all 0-1 sequences of length n, with two vertices
being adjacent if and only if they differ in exactly one position. We can regard Qn as
the Cartesian product of n copies of K2. This graph is bipartite, with one partite set
X being the set of all vertices with an even number of 1’s and the other partite set Y
being the set of all vertices with an odd number of 1’s.

We now investigate the problem of factoring Qn as Qn = H × K2. This has
already been addressed in [4, 5] using a different line of reasoning. In these papers it
was shown that all decompositions of Qn into a direct product are of the form H×K2

and that H is a hypercube of dimension n−1 with certain additional edges defined by
involutions. However the question of direct computation and enumeration of all such
graphs H was left open. Since we are merely refining known results, the exposition
in this section will be somewhat informal.

For a starting point consider Q3. Theorem 1 asserts that Q3 = H ×K2 exactly
when H = Qα

3 for some reversing involution α of Q3. Figure 3 shows three such α
along with the corresponding graphs H = Qα

3 . (The reader can check that H ×K2
∼=

Q3 in each case.) Thus there are at least three H for which Q3 = H ×K2, but we are
immediately confronted with the questions of whether these are the only three, and
how this would play out for an arbitrary Qn.

To apply the full force of Theorem 1 to Qn, we must investigate the orbits of the
conjugation action of Aut(Qn) on RI(Qn). This in turn involves understanding the
structure of maps in both Aut(Qn) and RI(Qn). We now focus on this task.

We denote an arbitrary vertex of Qn by a sequence x1x2 . . . xn, where each xi is
either 0 or 1. By Theorem 4.15 of [3] any f ∈ Aut(Qn) has expression

f(x1x2 . . . xn) = δ1(xπ(1))δ2(xπ(2)) . . . δ3(xπ(n)),(5.1)

where π is a permutation of {1, 2, . . . , n} and for each i the function δi ∈ Aut(K2) is
either the identity δi(ε) = ε or the nontrivial automorphism δi(ε) = ε. Intuitively, this
means that the automorphism group of the Cartesian product of n K2’s is generated
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Fig. 4. Graphic representation of automorphisms of Q6.

by the automorphisms δi of the individual factors together with the permutations of
the factors. (It is, in fact, isomorphic to the automorphism group of the disjoint union
of n K2’s.)

As an example, consider the automorphism of Q6 defined as f(x1x2x3x4x5x6) =
x2x1x3x5x6x4. We can represent f graphically as in Figure 4(a). The solid line from
x1 indicates that f places the value of x1 in the second position of the output list,
and the solid line from x2 indicates that f places the value of x2 in the first position
of the output list. The dashed line from x3 indicates that f places the value x3 in the
third position, and so on. In general, a dashed line extending leftward from xi to the
jth position means f places the value xi in the jth position of the output list. A solid
line extending leftward from xi to the jth position means f places the value xi in the
jth position of the output list. (The fact that the xi’s appear on the right, rather
than the left, is a consequence of the unfortunate convention of writing functions in
postfix form f(x) rather than in prefix (x)f .)

The graphic representation of f−1 is the reflection of the graphic representation
of f across the vertical axis. (Figures 4(a) and 4(b) show the graphic representation
of an f and f−1.) Thus f is an involution if and only if f = f−1 if and only if the
graphic representation of f is symmetric with respect to the vertical axis. (Figure 4(c)
shows a typical involution.)

From this it follows that if f is an involution, then the permutation π from (5.1)
is a product of disjoint transpositions. Moreover, if π interchanges i and j, then the
graphic representation of f has lines extending from the ith and jth positions on the
right to the jth and ith positions on the left, and these two lines are either both solid
or both dashed.

We now identify certain “canonical” involutions of Qn. Given positive integers
j and k with 0 ≤ j + 2k ≤ n, let αj,k ∈ Aut(Qn) have a graphic representation
consisting of j horizontal dashed lines followed by k consecutive involutions with solid
lines, followed by n− j − 2k horizontal solid lines. Several such involutions of Q9 are
illustrated in Figure 5(a)–(c).

Figure 5(d) illustrates how for an involution f of Qn, one can find some σ ∈
Aut(Qn) for which σ−1fσ = αj,k. Thus every involution is conjugate to some αj,k. On
the other hand no two distinct αj,k are conjugate to each other: Each αj,k is uniquely
determined by integers j and k, and it’s straightforward to check σ−1αj,kσ(x1x2 . . . xn)
fixes exactly n − j − 2k of the positions in the list x1x2 . . . xn and changes j of the
positions xi to xi. Therefore if σ−1αj,kσ = αj′,k′ , then j′ = j and k′ = k.

Which of the αj,k are reversing involutions? Since one partite set of Qn consists
of vertices x1x2 . . . xn that have an even number of 1’s and the other partite set has
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α3,2 α2,1 α1,0 σ−1 f σ = α2,3
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Fig. 5. Canonical involutions αj,k.

all the vertices with an odd number of 1’s, the only αj,k that reverse the parity are
those for which j is odd.

The previous two paragraphs imply that each Aut(Qn)-conjugacy class of RI(Qn)
contains exactly one αj,k, and j is odd; conversely each such αj,k belongs to a conju-
gacy class of RI(Qn).

It follows that the number of conjugacy classes of RI(Qn) equals the number of
automorphisms αj,k of Qn with j odd. These are easy to count, for their number
equals the number of non-negative integer solutions to 1 ≤ j + 2k ≤ n with j odd.
Replacing the odd j with 2m + 1, we are looking for the number of non-negative
solutions to 1 ≤ 2m + 1 + 2k ≤ n, or rather to 0 ≤ m + k ≤ n−1

2 . The number of
solutions equals the number of integer lattice points in the first quadrant of the m-k
plane which lie on or below the line m + k = n−1

2 . There are 1
2,

n
2 -(,

n
2 - + 1) such

points. Applying this to Theorem 1 gives a result that describes all the ways that a
K2 factor can be extracted from a hypercube.

Theorem 2. The graphs H for which Qn = H × K2 are precisely the graphs
H = Q

αj,k
n for odd j. Up to isomorphism, there are exactly 1

2,
n
2 -(,

n
2 - + 1) such

graphs H.
For example, if n = 3, then there are three such H , so Figure 3 indeed illustrates

all the H = Qα
3 for which Q3

∼= H ×K2.
Although it would not be difficult to compute the graphs Q

αj,k
n from scratch, we

offer a final result which underscores their surprisingly simple structure. Given any
αj,k ∈ Aut(Qn) with j odd, there is an associated automorphism αj−1,k ∈ Aut(Qn−1).
Graphically, we obtain αj−1,k by “throwing away” the top horizontal dashed line in
αj,k. Since j − 1 is even we have αj−1,k ∈ PA(Qn−1). Our next proposition shows
that Q

αj,k
n is simply Qn−1 with the edges {xαj−1,k(x) : x ∈ V (Qn−1)} appended to

it.
proposition 3. If j is odd, then Q

αj,k
n

∼= Qn−1 ∪ {xαj−1,k(x) : x ∈ V (Qn−1)}.
Proof. We construct an isomorphism µ : Qn−1 ∪ {xαj−1,k(x) : x ∈ V (Qn−1)} →

Q
αj,k
n .

Let λ0 : V (Qn−1) → V (Qn) be the map λ0(x) = 0x that appends a zero to the
left of list x. Thus λ0(01101) = 001101, etc. Similarly let λ1 : V (Qn−1) → V (Qn)
append a 1 to the left of its argument. Notice αj,kλ0 = λ1αj−1,k.
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Let X be the partite set of Qn−1 consisting of 0-1 lists with an even number of
1’s and let Y be the partite set consisting of all the lists with an odd number of 1’s.
Now define a bijection µ : Qn−1 → Q

αj,k
n as µ = (λ0, αj,kλ0). (Recall the notation

from section 2.) Notice that µ is a homomorphism, for given xy ∈ E(Qn−1) (with
x ∈ X) λ0(x)λ0(y) ∈ E(Qn), so µ(x)µ(y) = λ0(x)αj,kλ0(y) is an edge of Q

αj,k
n by

definition of Q
αj,k
n .

But also note that µ carries any pair x, αj−1,k(x) to the endpoints of an edge in
Q

αj,k
n . If x ∈ X , then αj−1,k(x) ∈ X also, and µ(x)µ(αj−1,k(x)) = λ0(x)λ0(αj−1,k(x))

= λ0(x)αj,kλ1(x), which is an edge of Q
αj,k
n because λ0(x)λ1(x) ∈ E(Qn). Similarly if

x ∈ Y we have µ(x)µ(αj−1,k(x)) = αj,kλ0(x)αj,kλ0αj−1,k(x) = αj,kλ0(x)αj,kαj,kλ1(x)
= αj,kλ0(x)λ1(x) = λ1(x)αj,kλ0(x) ∈ E(Q

αj,k
n ).

So far we have seen that µ is an injective homomorphism from the graph Qn−1 ∪
{xαj−1,k(x) : x ∈ V (Qn−1} to Q

αj,k
n . We now need only confirm that it is surjec-

tive. Notice that edges in Q
αj,k
n fall into four categories. First, they may have form

0xαj,k(0y), where x ∈ V (Qn−1) has an even number of 1’s, y has an odd number of
1’s, and xy ∈ E(Qn−1). Second, they may have form 1xαj,k(1y), where x ∈ V (Qn−1)
has an odd number of 1’s, y has an even number of 1’s, and xy ∈ E(Qn−1). Third,
they may have form 0xαj,k(1x), where x ∈ V (Qn−1) has an even number of 1’s.
Fourth, they may have form 1xαj,k(0x), where x ∈ V (Qn−1) has an odd number of
1’s. The following calculations show that in each case these edges are images under
µ of edges in Qn−1 ∪ {xαj−1,k(x) : x ∈ V (Qn−1}.

0xαj,k(0y) = λ0(x)αj,kλ0(y) = µ(x)µ(y),

1xαj,k(1y) = α
2
j,kλ1(x)αj,kλ1(y) = αj,kλ0αj−1,k(x)λ0αj−1,k(y)

= µ
(
αj−1,k(x)

)
µ
(
αj−1,k(y)

)
,

0xαj,k(1x) = λ0(x)αj,kλ1(x) = λ0(x)λ0αj−1,k(x) = µ(x)µ
(
αj−1,k(x)

)
,

1xαj,k(0x) = α
2
j,kλ1(x)αj,kλ0(x) = αj,kλ0αj−1,k(x)αj,kλ0(x)

= µ
(
αj−1,k(x)

)
µ(x).

This completes the proof.
Theorem 2 and Proposition 3 give a simple way to construct all graphs H for

which Qn = H ×K2. Take any αj,k ∈ Aut(Qn−1) with j even, and let H = Qn−1 ∪
{x αj,k(x) : x ∈ V (Qn−1)}. As an example Figure 6 shows the six graphs H for which
Q5 = H ×K2. In each case the edges of Q5−1 are drawn bold, and the edges of form
xαj,k(x) are drawn lighter.

In [4, 5], an involution of Qn−1 is called bipartite if it preserves the bipartition of
Qn−1. It is proved there that Qn

∼= H×K2 if and only if there is a bipartite involution
α ∈ Aut(Qn−1) for which H = Qn−1 ∪ {xα(x) : x ∈ V (Qn−1)}. This agrees with
our development here, but we have also completely enumerated and described the
bipartite involutions α. We remark that [4, 5] also prove that Qn

∼= H ×K2 is always
a prime factorization of Qn.

Acknowledgments. We thank the referees for offering many helpful comments.
The second referee notes that the considerations of the present paper also hold for
infinite graphs, of course with appropriate modifications. For example, the two-sided
infinite path takes the place of the infinite even cycle. There is just one decomposition,
K2 times a one-sided infinite path with a loop at its origin. This certainly opens
avenues for further investigation.
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Fig. 6. The six graphs H for which Q5 ∼= H ×K2.
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