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Abstract

The total domination number of a simple, undirected graph G
is the minimum cardinality of a subset D of the vertices of G such
that each vertex of G is adjacent to some vertex in D. In 2007 Graf-
fiti.pc, a program that makes graph theoretical conjectures, was used
to generate conjectures on the total domination number of connected
graphs. More recently, the program was used to generate conjectures
on the total domination number of trees. In this paper, we discuss
and resolve several of these conjectures for trees, which are often im-
provements over known results for all connected graphs.
keywords: Graffiti.pc, total dominating set, total domination num-
ber, degrees, eccentricities
Mathematics Subject Classification: 05C35

1 Introduction and Definitions

A subset D of the vertices of a simple, undirected graph G = (V, E) is
a total dominating set if each vertex in V is adjacent to some vertex in
D. The total domination number of a graph G, denoted γt(G), is the
minimum cardinality of a total dominating set of G. Total domination in
graphs was introduced in 1980 by Cockayne, Dawes, and Hedetniemi [3].
Since then a number of papers on total domination in graphs have been
published. Comprehensive surveys appeared in 1998 (see [10] and [11]),
and more recently in [12].

∗Work supported in part by the United States Department of Defense and used re-
sources of the Extreme Scale Systems Center at Oak Ridge National Laboratory
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The total domination problem is known to be NP-complete and at-
tributed to Pfaff, Laskar and S. Hedetniemi [14]. Its complexity is one
motivation for discovering bounds for the total domination number of a
graph. For trees, on the other hand, there exists a linear algorithm [13],
thus bounds on the total domination number do not seem to have the same
immediate motivation. However, observe that since there is a spanning tree
of a connected graph that has the same total domination number as the
graph, some bounds on γt for trees are useful in proofs for bounds on γt for
connected graphs (as was the case in Theorems 3 and 5 in [4].)

Graffiti.pc is a program that makes graph theoretical conjectures. In
2007, DeLaViña used Graffiti.pc to generate conjectures involving the total
domination number of a connected graph [4], and more recently to gener-
ate conjectures involving the total domination number of trees (the topic of
this paper.) These conjectures take the form of upper or lower bounds for
the total domination number. In addition to their potential usefulness in
proving bounds on total domination for graphs in general described above,
we found the conjectures for trees aesthetically appealing, as they some-
times provide clever or surprising improvements over known bounds for all
connected graphs. Moreover, their proofs (or counter-examples) can often
be challenging or amusing. A numbered, annotated listing of Graffiti.pc’s
total domination conjectures and their current status can be found in [6].
Graffiti.pc employs two main strategies (called Dalmatian and Sophie) for
generating conjectures. The principle behind the Dalmatian heuristic (used
for conjectures discussed in this paper) is due to S. Fajtlowicz and its im-
plementation within Graffiti.pc is discussed in [5].

Let G be a graph with vertex set V = V (G). The number of vertices of
G we denote by n(G). The degree sequence of a graph provides many graph
invariants, including its maximum degree and minimum degree, which we
denote by ∆(G) and δ(G), respectively. The number of distinct values that
occur in the degree sequence is called the number of distinct degrees of G
and is denoted by dd(G). In a graph G, a vertex of degree zero is called
an isolated vertex. A vertex of degree one in a tree is called a leaf, and a
vertex that is adjacent to a leaf is called a support vertex.

For a subset A ⊂ V , let N (A) denote the neighborhood of A, that is,
the set of vertices adjacent to vertices in A. Let G[A] denote the subgraph
of G induced by A.

Finally, let α = α(G) denote the independence number of G, that is the
maximum cardinality of a subset of pairwise non-adjacent vertices.

The following proposition is a summary of some easily deduced facts
that will be used in this paper.
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Figure 1: Neighborhoods of support vertices

Proposition 1. Let G be a graph with no isolated vertices. Then

γt(G) ≥ n(G)
∆(G)

(1)

γt(G) ≤ 2α(G) (2)
γt(G) ≤ n(G) − ∆(G) + 1 (3)

2 Results

Graffiti.pc’s conjecture #331 in [6] states that the total domination number
of a tree is at most twice its independence number minus the number of
isolated vertices induced by the neighborhood of its support vertices, which
suggests an improvement for trees on the second upper bound given in
Proposition 1. Let us observe the following about the neighborhood of
support vertices of trees (Figure 1 makes it obvious).

Observation 1. Let T be a tree and S its support vertices. Then the
number of isolated vertices induced by N (S) is less than equal to the number
of isolated vertices induced by N (S) − S.

This observation together with Theorem 2 settles and improves on Con-
jecture #331.

Theorem 2. Let T be a non-trivial tree and S its support vertices. Then
γt ≤ 2α − |L*|, where L* is the set of vertices in N ′(S) = N (S) − S with
degree 0 with respect to T [N ′(S)].

Proof. The theorem is obvious if T is a star, so let’s assume otherwise. Let
N ′(S) = N (S) − S. So N ′(S) and S are disjoint. Let L denote the set
of leaves of T , and L+ denote the vertices of N ′(S) that are not leaves
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Figure 2: spider(4) has α = L∗ = γt = 5

but have degree 0 with respect to T [N ′(S)]. So clearly L*= L ∪ L+. Put
M = N ′(S) − (L ∪ L+), and let M∗ be a maximum independent set of
T [M ]. Let M ′ = M − M∗. Because T [M ] = T [M∗ ∪ M ′] is a forest, we
have |M ′| ≤ |M*|. Next, consider the set L∪L+ ∪M*. Although it is easy
to see this set is independent in T , it may not be a maximal independent
set. Hence, let K be a set of vertices such that I*= L ∪ L+ ∪ M*∪K is a
maximal independent set of vertices in T . Note that the component sets
L, L+, M*, and K of I* are pairwise disjoint. Moreover, by construction,
every vertex of K must be adjacent to some vertex in M ′.

Put D = S∪M ′∪L+∪M*∪K. We observe the component sets S, M ′,
L+, M*, and K of D are pairwise disjoint. Let K ′ = V (G)−(K∪S∪N ′(S)).
So V (G) = S ∪ N ′(S) ∪ K ∪ K ′ = S ∪ L+ ∪ L ∪ M∗ ∪ M ′ ∪ K ∪ K ′, and
D consists of all the vertices in T other than those in L ∪ K ′. D is a total
dominating set for T . Every vertex in K ′ must be adjacent to some vertex
in L+ ∪ M∗ ∪ K, by the maximality of the independent set I∗. If there
is a vertex in S which is adjacent only to vertices in L, then T is a star,
contrary to our assumption. So every vertex in S must be adjacent to a
vertex in (N ′(S) − L) ⊆ D. M ′, L+, and M∗ are all subsets of N ′(S) − L,
so every vertex in these sets is adjacent to a vertex in S ⊆ D. Finally, every
vertex in K is adjacent to a vertex in M ′ ⊆ D.

Now,
γt ≤ |D|
= |S ∪ M ′ ∪ L+ ∪ M*∪K|
= |S|+|M ′|+|L+|+|M*|+|K|
≤ |L|+|M*|+|L+|+|M*|+|K|+|K|
= 2|L|+2|L+|+2|M*|+2|K|−|L|−|L+|
= 2(|L|+|L+|+|M*|+|K|)− (|L|+|L+|)
= 2|L ∪ L+ ∪ M*∪K|−|L∪ L+|
= 2α*−|L*|
≤ 2α − |L*|

The bound in Theorem 2 is sharp for spider(k), the tree on 2k+1 vertices
constructed by identifying an endpoint of each of k paths on 3 vertices (see
Figure 2). This is because the independence and total domination numbers
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are equal to k + 1, and the number of isolated vertices induced by support
vertices is also k + 1.

The eccentricity of a vertex v of a graph, denoted r̂(v) is the maximum
distance from v to another vertex of the graph. The radius of a graph G is
the minimum eccentricity among vertices of G, and the diameter of a graph
is the maximum eccentricity among vertices of G, denoted rad(G) and
diam(G), respectively. The boundary (or periphery) is the set of vertices
of maximum eccentricity, and the center is the set of vertices of minimum
eccentricity. The eccentricity of a set X is the minimum eccentricity of
vertices in X, that is the distance of a vertex furthest away from all vertices
of X. In [4] we proved that the total domination number of a connected
graph G is at most one plus the eccentricity of the center of G, which we
denote by r̂(G); we restate this fact next as Theorem 3.

Theorem 3. [4] Let G be connected graph on n ≥ 2 vertices. Then γt(G) ≥
r̂(G) + 1.

Graffiti.pc’s #357 proposes that for trees this bound can be improved.

Theorem 4. Let T be a non-trivial tree. Then γt(T ) ≥ r̂(T )+ |N (B)|−1,
where B = {v | r̂(v) = diam(T )}.

Proof. For ease of notation, let Nb(T ) represent the number of neighbors
of boundary vertices of T , and thus the number of support vertices which
have neighbors in the boundary set. Proceeding by induction on Nb, notice
that if Nb = 2, the result follows from Theorem 3, settling our base case.

Assume the theorem is true for all trees with Nb = k ≥ 2 and let T be
a tree with Nb = k + 1. Let P be a diametral path of T with end vertices
x and y, and let v be a leaf boundary vertex whose support vertex is not
on P (such a vertex exists since Nb ≥ 3).

Without loss of generality assume d(v, x) ≥ d(v, y). Let u be the closest
vertex to v on P . Now, since v is also on a diametral path and all diametral
paths must contain the center (or bi-center) of a tree, we can deduce each
of the following is true, where a nontrivial branch point is a vertex with at
least three neighbors of degree two or more.

(i) d(v, u) = d(u, y)

(ii) d(x, y) = diam = d(x, v)

(iii) There is a nontrivial branch point on the path from v to u. Let w be
the closest of these to v. Note that d(v, w) ≥ 2.

Next, let e be the edge adjacent to w on the path from w to v and let C
be the component of T − e containing v. Now call T ′ be the subtree T −C.
Let D be a minimum total dominating set of T containing no leaves, and
D′ the vertices of D in T ′. We make the following observations about T ′.
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(iv) r̂(T ′) = r̂(T )

(v) Nb(T ′) = Nb(T ) − 1

Suppose d(v, w) ≥ 3. Since there are at least two vertices in D that
are not in D′ and we can extend D′ to a total dominating set of T ′ by
adding at most one vertex, γt(T ′) ≤ γt(T )−1. On the other hand, suppose
d(v, w) = 2. Let z be a non-leaf neighbor of w, not on the path from v to
x. Thus, z must be a support vertex and consequently in D′. Therefore
D′ is a total dominating set of T ′ , and so we still have γt(T ′) ≤ γt(T )− 1.
Finally, taken together and applying our inductive hypothesis,

γ(T ) ≥ γ(T ′) + 1 ≥ r̂(T ′) + Nb(T ′) − 1 + 1 = r̂(T ) + Nb(T ) − 1.

In [2], M. Chellali and T. Haynes proved that the total domination
number of a tree is bounded below by half of two more than the number
of non-leaf vertices. The number of non-leaf vertices in a tree is precisely
the number of cut vertices of the tree, and thus a corollary to their result
is that the total domination number of a tree is at least one plus half the
number of cut vertices. Now Graffiti.pc’s #355 is a corollary to the latter
and Theorem 6.

Theorem 5. (M. Chellali and T. Haynes [2]) Let T be a non-trivial tree.
Then γt(T ) ≥ n(T )−L+2

2 .

Theorem 6. Let T be non-trivial tree such that r̂(T ) = 2. Then γt(T ) ≥
x(T ), where x(T ) is the number of cut vertices of T .

Proof. Let D be a minimum total dominating set containing no leaves
(which must exist since T is not a star.) Each support vertex is in D
and each center has a support neighbor since r̂(T ) = 2. Thus each center
is in D to dominate its support neighbors. Since every non-leaf is a center
or a support vertex, the result follows.

Corollary 7. Let T be a non-trivial tree such that r̂(T ) ≥ 2. Then γt(T ) ≥
x(T )

r̂(T )−1
, where x(T ) is the number of cut vertices of T

Lemma 8. Let T be a non-trivial tree with the property that the vertices
of T can be partitioned into two sets A and B such that the vertices in A
are of degree two and B is an independent set. Then γT (T ) ≥ |B|.

Proof. Let D be a minimum total dominating set for T . Enumerate the
vertices in B as v1, ..., vk. Now for each vi, if vi is in D, let di = vi.
Otherwise, let di be some neighbor of vi in D. Now suppose di = dj for
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Figure 3: G(2) has γt = 8, c2 = 6, and p2 = 6

distinct values of i and j. If vi = di, or vj = dj, then vi and vj must be
adjacent, a contradiction. So we can assume di = dj is a vertex in A, i.e. it
has degree 2. But then one of either vi or vj must be in D, a contradiction
of our choice of di = dj. Thus |D| ≥ |{d1, ..., dk}| = |{v1, ..., vk}|.

P. Feit discovered a 34-vertex counter-example to Graffiti.pc’s Conjec-
ture #240 and consequently Conjecture #346 [6]. Indeed, his counter-
example can be extended to make the left and right sides of these inequal-
ities arbitrarily far apart. Conjecture #240 says, for example, that for a
tree the total domination number is at least the number of components
induced by non-degree two neighbors of degree two vertices. In Theorem
9 we prove a weaker version of Conjecture #346. Theorem 9 is sharp for
many trees. For instance, let G(k) be the graph constructed by taking a
path on 10 vertices (enumerated left to right as 1, 2, ...10) and identifying
an endpoint of each of k paths on 3 vertices with vertex 2 on the 10-path
and similarly identifying an endpoint of each of k paths on 3 vertices with
vertex 9 on the 10-path. Observe that for k ≥ 1: γt(G(k)) = 2k + 4; the
number of components of the subgraph induced by the complement of the
degree two vertices, denoted by c2, is 2k + 2; and the order of largest com-
ponent induced by degree two vertices, denoted by p2, is 6. See Figure 2
for G(2).

Theorem 9. Let T be a non-trivial tree and S the set of vertices of degree
two. Let c2 be the number of components of the subgraph induced by V (T )−
S, and p2 the order of a largest path in the subgraph induced by S. Then

γt(T ) ≥ c2 +
p2

2
− 1.

Proof. We assume that T has at least 2 degree two vertices otherwise the
relation follows trivially. Let us derive a tree T ′ from T as follows. For
each component of T [V (T ) − S], contract the vertices of the component
to a single vertex vi such that an edge in T incident to a vertex of the
component and to a vertex u in no component of T [V (T )−S] is still incident
to u but now also to vi. Let us call the set of contracted component vertices
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B = {v1, v2, ..., vc2}. Observe that components of T [S] are paths and let p2

be the order of a longest such path P . Next, let P ′ be the path P without
the endpoints of P and add to B the vertices of a largest independent set
of T [P ′]. Let A = V (T ′) − B. Observe that the vertices in A are of degree
two in T ′, and that B is an independent set in T ′. By construction and
Lemma 8, c2 + p2−2

2 ≤ |B| ≤ γt(T ′).

Lemma 10. Let T be a non-trivial tree. Let D be a minimum total domi-
nating set of T . Then for any vertex v ∈ V (T ) − D,

deg(v) ≤ γt(T )
2

.

Proof. Let k be the number of components induced by D. For v ∈ V (T )−D,
let A be the set of components of D that have a vertex adjacent to v and
B = N (v) ∩ (V (T ) − D) (i.e. the neighbors not in D). Since every vertex
in V (T ) − D must be adjacent to a vertex in D, in particular a vertex
in B must have a neighbor in D. But since T is a tree, no vertex in
B is adjacent to a vertex of a component in A nor to two vertices of a
component in D. Thus |B| ≤ k − |A| and the result follows since k ≤ γt(T )

2
and deg(v) = |A|+ |B|.

Theorem 11. Let T be a non-trivial tree. Then

γt(T ) ≥ 2
3
dd(T ).

Proof. Let D be a minimum total dominating set of T . Since the vertices
in D clearly contribute at most γt(T ) distinct degrees and by Lemma 10
the vertices in V (T )−D contribute at most γ(T )

2 distinct degrees, dd(T ) ≤
3
2γt(T ).

Figure 4: A graph in T4.

Next we define three classes of trees that comprise all trees for which
the bound in Theorem 11 is sharp. By a binary star we mean the tree
obtained by joining the centers of two stars. Let B(m1, m2) be the binary
star with support vertices of degrees m1 and m2. We define T2 as follows.

T2 = {B(m1, m2) : m1 6= m2}
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i.e. T2 is the collection of binary stars whose support vertices are of distinct
degrees.

Next, let T4 be the class of graphs constructed by taking the union of
B(m1, m2) and B(m3, m4) with mi ≥ 3 and mi 6= mj for 1 ≤ i, j ≤ 4, and
either identifying one leaf in B(m1, m2) with one leaf in B(m3, m4) (see
Figure 4 an example of such a graph), or joining one leaf in B(m1, m2) to
one in B(m3, m4). Observe that for a graph T in T4, γt(T ) = 4, dd(T ) = 6
and thus the bound in Theorem 11 is sharp for T .

Lastly, let T6 be the class of graphs constructed by taking the union of
B(m1, m2), B(m3, m4) and B(m5, m6) with each mi ≥ 4 and mi 6= mj for
1 ≤ i, j ≤ 6. Then either identify one leaf in B(m1, m2) and B(m3, m4),
and join this identified vertex to a leaf of B(m5, m6), or join one leaf in
B(m1, m2) to a leaf in each of B(m3, m4) and B(m5, m6). For a graph T in
T6 of the first type, γt(T ) = 6, dd(T ) = 9 and thus the bound in Theorem
11 is sharp for T .

Lemma 12. Let T be a non-trivial tree and let D be a minimum total
dominating set of T . If there is v ∈ V (T ) − D such that deg(v) = γt(T )

2 ,
then dd(T ) ≤ γt(T ) + 3.

Proof. Let v be in V (T ) − D of degree γt(T )/2. Let A be the set of com-
ponents of D that are incident to v and let B be the set of vertices of
V (T ) − D that are adjacent to v. Since each vertex in V (T ) − D must be
incident with one component of D and no two vertices in V (T ) − D are
incident to a common component of D, each vertex in B must be incident
with exactly one component of D that is not in A. Moreover, since each
vertex of V (T ) − D is adjacent to exactly one vertex of a component in
D, |A| + |B| = γt(T )/2 and no other vertex of V (T ) − D can be incident
with two components of D. Thus, the vertices of V (T ) − D contribute at
most three distinct degrees, which together with the γt(T ) possible distinct
degrees of the vertices D yields dd(T ) ≤ γt(T ) + 3.

Theorem 13. Let T be a non-trivial tree. Then γt(T ) = 2
3dd(T ) if and

only if T ∈ T2 ∪ T4 ∪ T6.

Proof. For a tree T in T2∪T4∪T6 it is easily seen that γt(T ) = 2
3dd(T ). For

the converse, suppose that T is a tree for which γt(T ) = 2
3
dd(T ) and let D be

a minimum total dominating set. Since the vertices of D contribute at most
γt(T ) distinct degrees, the vertices of V (T ) − D must contribute at least
γt(T )

2
distinct degrees, which implies that there must be a vertex of degree

at least γt(T )
2 in V −D. Now together with Lemma 10 we have that there is

a vertex v of degree γt(T )
2

. Next by Lemma 12, 3
2
γt(T ) = dd(T ) ≤ γt(T )+3,

and it follows that γt(T ) must be even and at most 6. We proceed by con-
sidering three cases with the observation that since v is of degree γt(T )

2 , D
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must induce the union of P2s (paths on two vertices).

Case 1: Suppose γt(T ) = 2 and dd = 3. Then D induces a P2. Clearly,
every vertex in V (T ) − D is adjacent to at exactly one endpoint of P2 and
must be a leaf in T . Thus, T is a binary star. Now, since dd = 3, and
every vertex in V (T )−D is a leaf, the two vertices in D must be of distinct
degree, and thus T ∈ T2.

Case 2: Suppose γt(T ) = 4 and dd = 6. Then there is a vertex v in
V (T )−D that is of degree 2. Now, either v has both neighbors in D or one
in D and one in V (T )−D. Suppose v has both neighbors in D. Then since
T is a tree, no other vertex of V (T )−D has more than one neighbor in D,
that is they are leaves. So the vertices in V (T )−D contribute two distinct
degrees, namely degrees 1 and 2. Since dd = 6, each of the 4 vertices in
D must be of degree at least 3 and distinct from one another. Thus, T is
a graph in T4. On the other hand, if v has one neighbor, say w, in D and
another, call it u, in V (T ) − D, then u must also have a neighbor in D.
Now clearly w and u cannot be incident with a common component in D,
but this implies that the remaining vertices of V (T ) − D are adjacent to
exactly one vertex in D. Thus the vertices in V (T ) − D contribute two to
the number of distinct degrees, namely degrees 1 and 2. Moreover, the 4
vertices in D must be degree at least 3 and distinct from one another. Thus
again it follows that T is in T4.

Case 3: Suppose γt(T ) = 6 and dd = 9. Then there is a vertex v in
V (T ) − D that is of degree 3. Now, either v has one neighbor in D or
two in D, but not all three in D (otherwise dd 6= 9). Suppose that v
has one neigbor, call it w, in D. Call the two neighbors of v that are in
V (T )−D a and b. Then a and b must be adjacent to some vertex in D, but
not incident with the component containing w, nor incident to a common
component of D. But this implies that the other vertices of V (T ) − D are
adjacent to only one vertex each in D. Thus the vertices in V (T ) − D
contribute three to the number of distinct degrees, namely degrees 1, 2 and
3. Moreover, the 6 vertices in D must be degree at least 4 and distinct from
one another. Thus T is in T6. Finally, suppose that v has two neighbors in
D. Then each of these two must be part of distinct components of D and
so the third neighbor of v (the one in V (T ) − D)) must be adjacent to the
third component of D. Now, clearly the remaining vertices of V (T ) − D
are adjacent to exactly one vertex in D. Thus the vertices in V (T ) − D
contribute three to the number of distinct degrees, namely degrees 1, 2 and
3. Moreover, the 6 vertices in D must be degree at least 4 and distinct from
one another. Thus again it follows that T is in T6.
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3 Some Open Conjectures

Graffiti.pc proposed lower bounds on the total domination number of a
tree that involve the number of components of the subgraph induced by
the maximum degree vertices. Before discussing one of those we prove a
related simple lower bound.

Proposition 14. Let T be a non-trivial tree, M the set of vertices of
maximum degree in T and c∆ be the number of components of the subgraph
induced by M . Then

γt(T ) ≥ c∆ + 1.

Proof. We assume that T has ∆ ≥ 3 and at least 2 components induced by
the maximum degree vertices otherwise the relation follows trivially. Let
Γ(T ) be the set of components induced by the maximum degree vertices of
T , and let c∆ = |Γ(T )|. Consider a component Ci ∈ Γ(T ), and let xi be
a representative of Ci. Observe that every xi has ∆ neighbors that do not
induce a maximum degree component of their own, either they are not of
maximum degree or they are in Ci. Suppose that the number of vertices
incident to more than one Ci is k. Then there are at least ∆c∆ −k vertices
that will not contribute to c∆, that is c∆ ≤ n − (∆c∆ − k). The latter is
equivalent to (∆ + 1)c∆ ≤ n + k. Now since T is a tree, k ≤ c∆ − 1, and
we see that

c∆ ≤ n − 1
∆

.

Now, it is easily seen that the claim follows from the fact that n
∆ ≤ γt(T ).

From Theorem 11 and the above proposition, it is easily seen that
γt(T ) ≥ 1

2c∆ + 1
3dd(T ). Graffiti.pc proposed the following improvement

over the latter observation.

Conjecture 1. [Graffiti.pc #379] Let T be a non-trivial tree, M the set of
vertices of maximum degree in T and c∆ be the number of components of
the subgraph induced by M . Then

γt(T ) ≥ c∆ +
dd(T )

3
.

The next two conjectures of Graffiti.pc also suggest improvement for
trees over known results for all connected graphs. In [4], it is proven that
for any connected graph G, γt(G) ≥ rad(G), and that γt(G) ≥ (diam(G)+
1)/2.
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Conjecture 2. [Graffiti.pc #349] Let T be a non-trivial tree, S the set of
vertices of degree 2 in T and c be the number of components of the subgraph
induced by N (S) ∪ S. Then

γt(T ) ≥ rad(T ) + c − 1.

Conjecture 3. [Graffiti.pc #350] Let T be a non-trivial tree, S the set of
vertices of degree 2 in T and c be the number of components of the subgraph
induced by N (S) ∪ S. Then

γt(T ) ≥ diam(T ) + c

2
.

In [1], Blidia, Chellali and Maffray present a new upper bound for the
domination number of a graph G, which we denote by γ(G), and is de-
fined as the minimum cardinality of a set S such that every vertex not
in the set has a neighbor in the set. Let βv(G) be the maximum size of
a matching in the subgraph induced by the non-neighbors of v and put
∆′(G) = max{d(v) + βv(G)|v ∈ V (G)}. Specifically, they proved that for
any graph G = (V, E), γ(G) ≤ |V (G)| −∆′(G). Recently, DeLaViña intro-
duced the graph invariant ∆′(G) to Graffiti.pc, which it used to conjecture
the following.

Conjecture 4. [Graffiti.pc #370] Let T be a non-trivial tree. Then

γt(T ) ≥ 2∆′(T )
∆(T )

.

We end this paper with a couple of additional open conjectures and
one refuted conjecture. For a tree T with p2 the order of a largest path
in the subgraph induced by the degree two vertices of T , and S(T ) the set
of support vertices of T , it is easy to see that γt(T ) ≥ p2

2 + |S(T )| − 2.
Graffiti.pc proposed the following slight improvement. Although it may
also be easily resolved, we note that few improvements for the obvious
γt(T ) ≥ |S(T )| are known.

Conjecture 5. [Graffiti.pc #347] Let T be a non-trivial tree, p2 the order
of a largest path in the subgraph induced by the degree two vertices, and
S(T ) the set of support vertices of T . Then

γt(T ) ≥ p2

2
+ |S(T )| − 1.

Conjecture 6. [Graffiti.pc #367] Let T be a non-trivial tree in which the
most frequently occuring degree is degree 2. Then

γt(T ) ≥
4
3
dd(T ).
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Figure 5: Counter-example to Graffiti.pc’s 368

Let d = (d1, d2, d3, ..., dn) be a non-decreasing sequence of non-negative
integers, and d′ = (d2 − 1, d3 − 1, ..., dd1+1 − 1, dd1+2, ..., dn) its derivative.
A sequence is said to be graphic if it is the degree sequence for some graph.
A result of Havil [9] and Hakimi [8] states that a sequence d graphic if and
only if d′ is graphic. Let G be a graph and d(G) its degree sequence in
non-decreasing order. It is also known that if one repeats the derivative on
the degree sequence of a graph, then after some steps the resulting sequence
will be a zero-sequence. Incidentally, the number of zeros of the resulting
sequence is called the residue of the graph, a term coined by Fajtlowicz;
moreover, his program Graffiti conjectured that the independence number
of a graph is at least its residue, which was proven in [7]. Now for a
graph G, let us call the entire process of repeating the derivative on d(G),
the Havil-Hakimi process, and let k be the smallest integer such that in
the Havil-Hakimi process the kth step introduces a zero in the derivative.
DeLaViña introduced the graph invariant to Graffiti.pc, which it used to
conjecture the following.

Conjecture 7. [Graffiti.pc #368] Let T be a tree on n > 2 vertices. Then

γt(T ) ≥ 1 + k,

where the kth step of the Havil-Hakimi process introduces a zero.

The graph in Figure 5 is a counter-example to this conjecture with total
domination number 8 and k = 8. It is easily seen that this counter-example
belongs to a large family of graphs that serve as counter-examples, but we
are interested in knowing if a smaller counter-example exists.
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