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Abstract. A criterion is specified for identifying graphs with non-

empty critical independent sets. A polynomial-time algorithm is

given for finding them and, thus, reducing the problem of finding

a maximum independent set (MIS) in such a graph to finding a MIS

in a proper subgraph. This algorithm can be extended to identify

maximum cardinality critical independent sets, answering a question

of Butenko and Trukhanov.

1. Introduction

An independent set of vertices in a graph is a set of vertices no two of

which are adjacent. A maximum independent set is a independent set of

largest cardinality. Finding a maximum independent set (MIS) in a graph is

a well-known widely-studied NP-hard problem [7]. In this note we describe

a polynomial-time algorithm for reducing this problem to the MIS problem

on a subgraph.

The following notation is used throughout: the vertex set of a graph G is

V (G), the order n(G) = |V (G)|, the edge set is E(G), the set of neighbors

of a set S ⊆ V (G) is N(S), the graph induced on a set S ⊆ V (G) is G[S],

and the independence number, the cardinality of a MIS, is α(G). All graphs

are assumed to be finite and simple.

An independent set of vertices I is a critical independent set if |I|−|N(I)|
is maximized. Butenko and Trukhanov proved that any critical independent



set is contained in a maximum independent set [5]. This can lead to a speed-

up of the problem of finding a maximum independent set (MIS) and the

independence number of a graph: if I is a critical independent set of a

graph G, then the problem of finding a MIS can be reduced to finding one

for G \ (I ∪N(I)). In fact, Butenko and Trukhanov demonstrate that the

speed-up from this reduction can be dramatic.

The algorithm Butenko and Trukhanov use for finding a critical indepen-

dent set, first suggested by Ageev [1], does not always result in a non-empty

critical independent set in cases where there is, in fact, such a set, and thus

does not always result in a reduction of the problem of finding a MIS to

a smaller graph. In this note, a criterion will be specified for when a non-

empty critical independent set exists as well as an algorithm for finding one

in polynomial-time.

Butenko and Trukhanov ask “how to find the largest critical independent

set in a graph?” This question can now be answered. The specified algo-

rithm can be extended to yield a maximum-cardinality critical independent

set.

2. Critical Independent Sets

Definition 2.1. C ⊆ V (G) is a critical set of a graph G if |C| − |N(C)| ≥
|U | − |N(U)| for every U ⊆ V (G).

Definition 2.2. I ⊆ V (G) is a critical independent set of a graph G if I

is an independent set of vertices and |I| − |N(I)| ≥ |U | − |N(U)| for every

independent set U ⊆ V (G).

A graph may contain critical independent sets of different cardinalities.

A graph consisting of a single edge (K2, the complete graph on two vertices)

has critical independent sets of cardinalities 0 and 1. A graph may not

contain a non-empty critical independent set. For instance, the empty

set is the unique critical independent set of K3. In fact, for any graph

with a perfect matching (which is, in a well-defined sense, almost every

graph with an even number of vertices [3, p. 178]), the empty set is a

critical independent set. Finding a critical independent set using Ageev’s
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algorithm may yield no reduction in these cases. There are, though, graphs

with perfect matchings which have non-empty critical independent sets: K2

is an example.

We now define the bi-double graph of a given graph. This graph is utilized

in a proof of Zhang [8], and referred to in the papers of Ageev and Butenko

and Trukhanov, and is a more generally useful proof technique (see, for

instance, [2]).

Definition 2.3. For a graph G, the bi-double graph B(G) has vertex

set V ∪ V ′, where V ′ is a copy of V . If V = {v1, v2, . . . , vn}, let V ′ =

{v′1, v′2, . . . , v′n}. Then, (x, y′) ∈ E(B(G)) if, and only if, (x, y) ∈ E(G).

Theorem 2.4. (Ageev) If C is a critical set then the isolated points in

G[C], the graph induced on C, is a critical independent set.

Theorem 2.5. (Ageev) For a graph G, if I is a maximum independent set

in the bi-double graph B(G), then U = V (G) ∩ I is a critical set for G.

The preceding two theorems imply that the following algorithm of Ageev

results in a critical independent set I in a graph G:

(1) Construct the bi-double graph B(G) of G.

(2) Find a maximum independent set J in B(G).

(3) Let J ′ = V ∩ J .

(4) Let I be the set of isolated points in G[J ′].

Since a maximum independent set in a bipartite graph can be found

in polynomial-time, Ageev’s algorithm yields a critical independent set in

polynomial time. (Zhang was the first to prove the existence of such an

algorithm).

Butenko and Trukhanov showed that identifying a non-empty critical

independent set gives a polynomial-time reduction of the problem of finding

a maximum independent set to a proper subgraph. The following theorem

identifies a fact about the structure of critical independent sets, and leads

to a new proof (below) of Butenko and Trukhanov’s theorem.

Definition 2.6. For disjoint subsets X and Y of the vertices of a graph G,

there is a matching from X to Y if there is a set of disjoint edges having
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one endpoint in X and the other in Y and that covers all of the vertices in

X.

Theorem 2.7. If I is a critical independent set, then there is a matching

from N(I) to I.

Proof. Note that I and N(I) are disjoint. Let B be the subgraph of G

whose vertices are I ∪ N(I), with (x, y) ∈ E(B) if, and only if, x ∈ I,

y ∈ N(I), and (x, y) ∈ E(G). Clearly, it is enough to prove the claim for

this subgraph. Let J ⊆ N(I). Suppose, |J | > |N(J)|. Let X = I −N(J).

Then N(X) ⊆ N(I)− J (so |N(I)| ≥ |N(X)|+ |J |), and

|X| − |N(X)| > |X| − |N(X)| − (|J | − |N(J)|) =

(|X|+ |N(J)|)− (|N(X)|+ |J |) ≥ |I| − |N(I)|.

This contradicts the fact that I is a critical independent set. So, it must

be that |N(J)| ≥ |J |. Since this is true for every subset J ⊂ N(I), Hall’s

Theorem (see, for instance, [4]) implies the claim. �

Theorem 2.8. (Butenko & Trukhanov) If Ic is a critical independent set

of a graph G, then there exists a maximum independent set I of G, such

that Ic ⊆ I.

Proof. Let Ic be a critical independent set of G. Let J be a maximum

independent set of G, and let JN = J ∩ N(Ic). Let J ′
N ⊆ Ic be the

vertices matched with vertices of JN by the matching from N(Ic) to Ic

given by Theorem 2.7. Let J ′ = (J \ JN ) ∪ J ′
N . Clearly, J ∩ J ′

N is empty,

|JN | = |J ′
N |, J ′ is an independent set in G, and |J | = |J ′|. So J ′ is a

maximum independent set. Since the vertices in Ic \ J ′
N are adjacent only

to elements of N(Ic), and J ′ ∩ N(Ic) is empty, Ic \ J ′
N ⊆ J ′. Since, by

definition, J ′
N ⊆ J ′, it follows that Ic ⊆ J ′. �

3. A criterion for independence reductions

If there is any non-empty independent set I such that |I| ≥ |N(I)|,
then there is a non-empty critical independent set. If there is a pendant

for instance, there is a non-empty critical independent set. In this sense,
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and in the sense that identification and removal of these sets reduces the

problem of finding maximum independent sets, a critical independent set

can be viewed as a generalization of a pendant.

Ageev’s algorithm yields a critical independent set—but this set may be

empty in the case where non-empty independent sets exist. The following

results imply an algorithm which yields a non-empty critical independent

set when one exists.

Lemma 3.1. If Ic is a critical independent set of the graph G then I =

Ic∪(V ′−N(Ic)) is a maximum independent set of the bi-double graph B(G).

Proof. Clearly I is independent. Suppose there is a maximum independent

set J ⊆ V (B(G)) such that |J | > |I|. Let JV = J ∩ V and JV ′ = J ∩ V ′.

So, |JV |+ |JV ′ | = |J | > |I| = |Ic|+ |V ′ \N(Ic)|. Since JV ′ = V ′ \N(JV ),

|V ′ \N(JV )| = |V | − |N(JV )|, and |V ′ \N(Ic)| = |V | − |N(Ic)|, it follows

that |JV | + |V | − |N(JV )| > |Ic| + |V | − |N(Ic)|. By Theorem 2.5, JV is

a critical set in G and, thus, that Ic is not a critical set (nor a critical

independent set).

Thus, since critical independent sets are critical sets, Ic is not a critical

set. Thus, I is a maximum independent set of B(G). �

Theorem 3.2. A graph G contains a non-empty critical independent set

if, and only if, there is a maximum independent set of the bi-double graph

B(G) containing both v and v′, for some vertex v ∈ V (G), and its copy

v′ ∈ V ′.

Proof. If Ic is a non-empty critical independent set of G then, by Lemma

3.1, I = Ic ∪ (V ′−N(Ic)) is a maximum independent set of B(G). For any

vertex v ∈ Ic, v is not adjacent to v′ in B(G). Thus, v′ ∈ V ′−N(Ic). Thus

v and v′ are in I.

Suppose I is a maximum independent set of B(G) containing both v and

v′. Then v ∈ J = I ∩ V (G). By Theorem 2.5, J is a critical set in G, and

by Theorem 2.4, the isolated points in G[J ] are a critical independent set

in G. Suppose v is not an isolated point in G[J ]. Then there is a vertex

w ∈ J such that v is adjacent to w in G. This implies that w is adjacent to
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v′ in B(G). So I contains v′ and w and I is independent, contradicting the

assumption that v is not isolated in G[J ]. Thus, the set of isolated points

of G[J ] is non-empty. �

Corollary 3.3. A graph G contains a non-empty critical independent set

if, and only if, there is a vertex v ∈ V (G) such that α(B(G)) = α(B(G)−
{v, v′} −N({v, v′}) + 2.

Proof. This follows immediately from Theorem 3.2. �

Corollary 3.3 suggests a polynomial-time algorithm for finding a non-

empty critical independent set in a graph if one exists:

(1) Construct graph B(G).

(2) Set BOOL=false.

(3) For i = 1, . . . , n = |V (G)|, set BOOL=true if α(B(G)) = α(B(G)−
{vi, v

′
i} −N({vi, v

′
i}) + 2. If BOOL=true, break.

(4) If BOOL=true,

(a) Find a maximum independent set J in B(G)−{vi, v
′
i}−N({vi, v

′
i}).

(b) Let J ′ = J ∩ V .

(c) Let I be the set of isolated points in G[J ′] together with v.

If BOOL=true, I is a non-empty critical independent set. If BOOL=false,

then no non-empty critical independent set exists in G.

4. Maximum Critical Independent Sets

Definition 4.1. A critical independent set is maximal if there is no critical

independent set which properly contains it. It is maximum if there is no

critical independent set with larger cardinality.

Butenko and Trukhanov raised the question of how to identify maximum

critical independent sets. These sets will result in a maximum reduction in

the problem of finding a MIS. The following theorem justifies an algorithm

that yield these sets.

Theorem 4.2. Any critical independent set is contained in a maximum

critical independent set.
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Proof. Suppose I is a critical independent set and J is a maximum crit-

ical independent set. Let I ′ = I ∪ J ′, where J ′ = J \ (I ∪ N(I)). It is

enough to show that I ′ is a maximum critical independent set. Clearly I ′

is independent.

We will first show that I ′ is a critical (independent) set; in particular,

that |I ′|−|N(I ′)| ≥ |I|−|N(I)|. Since I and J ′ are disjoint, |I ′| = |I|+ |J ′|.
N(I ′) ⊆ N(I)∪[N(J)\(I∪N(I))] and |N(I ′)| ≤ |N(I)|+|N(J)\(I∪N(I))|
So,

|I ′| − |N(I ′)| ≥ |I| − |N(I)|+ |J ′| − |N(J) \ (I ∪N(I))|.

It is enough then to show, |J ′| ≥ |N(J) \ (I ∪N(I))|.
Now, J = J ′∪ (I∩J)∪ (N(I)∩J). By definition, J ′, I∩J , and N(I)∩J

are mutually disjoint. So,

|J | = |J ′|+ |I ∩ J |+ |N(I) ∩ J |.

Also, N(J) = (I ∩ N(J)) ∪ (N(I) ∩ N(J)) ∪ (N(J) \ (I ∪ N(I)). Clearly,

I ∩N(J), N(I) ∩N(J) and N(J) \ (I ∪N(I)) are disjoint. So,

|N(J)| = |I ∩N(J)|+ |N(I) ∩N(J)|+ |N(J) \ (I ∪N(I))|.

Then,

(4.1) |J | − |N(J)| =

(|N(I)∩J |−|N(J)∩I|)+|I∩J |+|J ′|−(|N(I)∩N(J)|+|N(J)\(I∪N(I))|).

Now, Theorem 2.7 guarantees that there is a matching from N(J) to

J and from N(I) to I. Since the vertices in I ∩ N(J) ⊆ N(J) must be

matched to vertices in N(I)∩J , and the vertices in N(I)∩J ⊆ N(I) must

be matched to vertices in I ∩N(J), it follows that |I ∩N(J)| = |J ∩N(I)|
and |N(I) ∩ J | − |N(J) ∩ I|, the first term in Equation 4.1, is 0.

Assume that |N(J)\(I∪N(I))| > |J ′|. Note that N(I∩J) ⊆ N(I)∩N(J)

and |N(I ∩ J)| ≤ |N(I) ∩N(J)|. Then Equation 4.1 gives,

|J | − |N(J)| = |I ∩ J |+ |J ′| − (|N(I) ∩N(J)|+ |N(J) \ (I ∪N(I))|)

< |I ∩ J | − |N(I) ∩N(J)| ≤ |I ∩ J | − |N(I ∩ J)|,

contradicting the fact that J is a critical (independent) set. Thus, |N(J) \
(I ∪N(I)| ≤ |J ′| and I ′ is a critical independent set.
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Lastly, we show that I ′ is maximum; in particular that |I ′| = |J |. It was

noted above that J = (J∩I)∪(J∩N(I))∪J ′, |J | = |J∩I|+|J∩N(I)|+|J ′|,
and |I ′| = |I| + |J ′|. Since I is a critical independent set, by Theorem 2.7

there is a matching from N(I) to I. Let J ′
N ⊆ I be the vertices matched

to (J ∩N(I)) ⊆ N(I) under this matching. So |J ′
N | = |J ∩N(I)|. Clearly

J ′
N and J ∩ I are disjoint. |I ′| = |I| + |J ′| = |J ′

N | + |I \ J ′
N | + |J ′| ≥

|J ∩N(I)|+ |J ∩ I|+ |J ′| = |J |. Note that (J ∩ I) ⊆ (I \ J ′
N ). So |I ′| ≥ |J |

and, since J is a maximum critical independent set, |I ′| = |J |. Thus I ′ is a

maximum critical independent set.

�

Corollary 4.3. If a vertex v of a graph G is contained in some critical

independent set, then there is a maximum critical independent set which

contains v.

Corollary 4.4. A maximal critical independent set is a maximum critical

independent set.

The idea of the following algorithm is to find a maximal critical inde-

pendent set I by choosing a vertex, testing if it is contained in a critical

independent set and, if it is, adding it to I and removing it and its neigh-

bors. In either case the process is repeated on the graph induced on the

remaining vertices.

The Maximal Critical Independent Set (MCIS) Algorithm

(1) Construct bi-double graph B(G) of G.

(2) i := 1, I := ∅;
(3) If i > |V (G)|, return I.

(4) If vi /∈ V (B(G)), i := i + 1, and return to Step 3.

(5) If α(B(G)) = α(B(G)− {vi, v
′
i} −N({vi, v

′
i}), BOOL:=true. Else,

BOOL:=false.

(6) If BOOL=true, I := I ∪ {vi}, V (B(G)) := V (B(G)) \ ({vi, v
′
i} ∪

N({vi, v
′
i}), i := i + 1. Return to Step 3.

(7) If BOOL=false, V (B(G)) := V (B(G)) \ {vi, v
′
i}, i := i + 1. Return

to Step 3.
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Theorem 4.5. The MCIS Algorithm yields a maximum critical indepen-

dent set.

Proof. By Corollary 4.4 it is enough to show that this algorithm produces

a maximal critical independent set. For graphs with a single vertex, the

MCIS algorithm returns a one-element set. This set is clearly a maximal

critical independent set.

Suppose the MCIS algorithm produces a maximal critical independent

set for graphs with n or fewer vertices. Suppose G has n + 1 vertices. If

the only critical independent set of G is the empty set then, by Corollary

3.3, the test in Step 6 will be negative and set I will remain empty after

each loop. I is a maximal critical independent set.

Suppose G contains a non-empty critical independent set. Let i be the

first index so that vi belongs to a critical independent set. Corollary 3.3

guarantees that the test in Step 6 will be negative. The MCIS algorithm

then sets I := {vi} and continues on the graph G′ induced on V (G)−{vi}−
N({vi}). This graph has n or fewer vertices. By assumption, the MCIS

algorithm (then) yields a maximal critical independent set J for G′. So

I = J ∪ {vi} is a maximal critical independent set for G. �

Theorem 4.6. If I is a maximum critical independent set of G, then the

only critical independent set of G− I −N(I) is the empty set.

This means that any further repetition of the MCIS algorithm will not

yield any further reduction.

5. Weighted Critical Independent Sets

The results of Ageev, Butenko and Trukhanov all have analogues for

weighted graphs. An anonymous referee asked “whether these results can

be extended to the weighted version of the MIS problem as well.” The

answer is yes and maybe: a criterion can be specified for the existence

of a critical weighted independent set which exactly parallels the criterion

for existence in the non-weighted case, but it is an open question whether

any critical weighted independent set is contained in a maximum weight

independent set.
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Definition 5.1. A weighted graph is a graph where a nonnegative number

wi (called a weight) is associated to each vertex vi. The weight of a set

S ⊆ V is w(S) =
∑

vi∈S wi. S is a critical weighted set if

w(S)− w(N(S)) ≥ w(T )− w(N(T ))

for any set T ⊆ V . A set I ⊆ V is a critical weighted independent set if I is

independent and a critical weighted set. I is a maximum weight independent

set if I is independent and w(I) ≥ w(J) for any other independent set J . A

critical weighted independent set is maximum if there is no critical weighted

independent set with larger weight.

The weighted extensions of Ageev’s theorems [1] are reproduced here as

they are required for the proof of Theorem 5.5.

Theorem 5.2. (Ageev) If C is a critical weighted set then the isolated

points in G[C], the graph induced on C, is a critical weighted independent

set.

Theorem 5.3. (Ageev) For a graph G, if I is a maximum weighted inde-

pendent set in the bi-double graph B(G), then U = V (G) ∩ I is a critical

weighted set for G.

The criterion for determining if a graph has a non-empty critical inde-

pendent set can be extended to the weighted case: there is a polynomial-

time criterion for determining if a weighted graph has a non-empty critical

weighted independent set.

Lemma 5.4. If Ic is a critical weighted independent set of the graph G

then I = Ic ∪ (V ′ − N(Ic)) is a maximum weight independent set of the

bi-double graph B(G).

Proof. Clearly I is independent. Suppose there is a maximum weight in-

dependent set J ⊆ V (B(G)) such that w(J) > w(I). Let JV = J ∩ V and

JV ′ = J ∩V ′. So, w(JV )+w(JV ′) = w(J) > w(I) = w(Ic)+w(V ′ \N(Ic)).

Since JV ′ = V ′ \N(JV ), w(V ′ \N(JV )) = w(V )− w(N(JV )), and w(V ′ \
N(Ic)) = w(V ) − w(N(Ic)), it follows that w(JV ) + w(V ) − w(N(JV )) >

w(Ic) + w(V )−w(N(Ic)). By Theorem 5.3, JV is a critical weighted set in
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G and, thus, that Ic is not a critical weighted set (nor a critical weighted

independent set).

Thus, since critical weighted independent sets are critical weighted sets,

Ic is not a critical weighted set. Thus, I is a maximum weighted indepen-

dent set of B(G). �

Theorem 5.5. A graph G contains a non-empty critical weighted indepen-

dent set if, and only if, there is a maximum weight independent set of the

bi-double graph B(G) containing both v and v′, for some vertex v ∈ V (G),

and its copy v′ ∈ V ′.

Proof. If Ic is a non-empty critical weighted independent set of G then, by

Lemma 5.4, I = Ic ∪ (V ′ −N(Ic)) is a maximum weighted independent set

of B(G). For any vertex v ∈ Ic, v is not adjacent to v′ in B(G). Thus,

v′ ∈ V ′ −N(Ic). Thus v and v′ are in I.

Suppose I is a maximum weight independent set of B(G) containing

both v and v′. Then v ∈ J = I ∩ V (G). By Theorem 5.3, J is a critical

weighted set in G, and by Theorem 5.2, the isolated points in G[J ] are a

critical weighted independent set in G. Suppose v is not an isolated point

in G[J ]. Then there is a vertex w ∈ J such that v is adjacent to w in G.

This implies that w is adjacent to v′ in B(G). So I contains v′ and w and I

is independent, contradicting the assumption that v is not isolated in G[J ].

Thus, the set of isolated points of G[J ] is non-empty. �

If I is a maximum weight independent set of a graph G, let the weighted

independence number of G be αw(G) = w(I). Since every graph has a

maximum weight independent set, αw(G) is well-defined.

Corollary 5.6. A graph G contains a non-empty critical weighted indepen-

dent set if, and only if, there is a vertex v ∈ V (G) such that αw(B(G)) =

αw(B(G)− {v, v′} −N({v, v′}) + 2w(v).

Proof. This follows immediately from Theorem 5.5. �

Whether Theorem 4.2 is extendable to the weighted case is an open ques-

tion. Is every critical weighted independent set contained in a maximum
11



critical weighted independent set? The proof that every critical indepen-

dent set is contained in a maximum critical independent set made use of

Theorem 2.7, which cannot be extended: it is not true that, if I is a crit-

ical weighted independent set, then there is a matching from N(I) to I.

Consider the complete graph K3 with three vertices. Let the vertices be

V = {v1, v2, v3}, having weights w1 = 1, w2 = 1
2 , and w3 = 1

2 . Let I = {v1}.
It is easy to verify that I is a critical weighted independent set of K3. But

there is no matching from N(I) = {v2, v3} to I.

6. Coda: Critical Independence Reductions for Fullerenes

This investigation was inspired by an attempt, using Butenko and Trukhanov’s

theorem and Ageev’s algorithm, to reduce the problem of finding maximum

independent sets in fullerene graphs—there is strong statistical evidence

that the independence number of a fullerene is a predictor of its stability

[6]. No reduction was found and, in fact, no reduction is possible.

Definition 6.1. A fullerene or fullerene graph is a connected, cubic, planar

graph whose faces are either pentagons or hexagons.

Theorem 6.2. The empty set is the only critical independent set in a

fullerene. (Equivalently, for every non-empty independent set I of a fullerene,

|N(I)| > |I|.)

Proof. Suppose G is a fullerene and G contains a non-empty independent

set I such that |N(I)| ≤ |I|. Since G is cubic, there are 3|I| edges incident

to set I. There are at least 3|I| edges incident to N(I). Thus, 3|N(I)| ≥ 3|I|
and |N(I)| ≥ |I| (and |N(I)| = |I|). Thus the graph G[I ∪N(I)], induced

on I ∪N(I), is bipartite. Since G is connected, G = G[I ∪N(I)]. So G is

bipartite, which contradicts the fact that fullerenes are not bipartite (it is

a simple consequence of Euler’s Theorem that they have twelve pentagonal

faces and, thus, odd cycles). �

The details of the proof actually give the following stronger theorem.

Theorem 6.3. If G is a connected, non-bipartite, regular graph then the

empty set is the only critical independent set.
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