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Abstract. The first attempt at automating mathematical conjecture-making
appeared in the late-1950s. It was not until the mid-1980s though that a pro-
gram produced statements of interest to research mathematicians and actually
contributed to the advancement of mathematics. A central and important idea
underlying this program is the Principle of the Strongest Conjecture: make the
strongest conjecture for which no counterexample is known. These two pro-
grams as well as other attempts to automate mathematical conjecture-making
are surveyed—the success of a conjecture-making program, it is found, corre-
lates strongly whether the program is designed to produce statements that are
relevant to answering or advancing our mathematical questions.

1. Introduction

Attempts have been made to automate various abilities belonging to research
mathematicians—abilities which include the invention of new mathematical con-
cepts, as well as the conjecture and proof of new theorems.

What counts as a “conjecture” and, thus, success or failure of various programs
that might be called “conjecture-making programs” is partly a terminological ques-
tion. The word “conjecture” is used in various ways: a teacher might call a stu-
dent’s proposal for trisecting an angle with ruler-and-compass a “conjecture” even
though he knows such a construction is impossible; a mathematician who proposes
some non-novel proposition may be credited with having made a “conjecture,” for
instance if evidence suggests that he couldn’t have known it had already been ad-
vanced previously; the term can also be used to apply unqualifiedly to certain of a
mathematician’s genuinely novel mathematical advances.

The first program to produce novel mathematical statements, a “conjecture-
making program” in one sense of this term, was due to Hao Wang in the late 1950s.
Wang was interested in programs that produced mathematical statements that were
not only novel but were “interesting.” What is wanted in scientific practice is a
reasonably unambiguous criterion of when to count an object, event, &c., as having
a certain property. (Effort in pursuit of this aim can have fruitful consequences—
as evidenced by Einstein’s criterion for when to count two events as occurring
“simultaneously.”) Wang’s criterion was that the produced propositions had a
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certain semantic form (propositional schema in two schematic variables, neither
of which represented a tautology). His Program II produced statements in the
language of propositional logic. Upon judging a statement to be interesting his
program only produced the statement upon determining it’s truth. Wang viewed
his work as an experiment which would ultimately be extended to more complex
mathematical domains.

The selection of interesting conjectures or theorems and useful
definitions is less easily mechanizable. For example Program II
gives only very crude results. It should be of interest to try
to get better results along the same line. In more advanced
domains, however, the the question seems to have a complexity
of a different order.

If we use a machine to grind out a large mass of proofs, then
there seems be be some mechanical test as to the importance
and centrality of concepts and theorems. If a same theorem or
expression occurs frequently, then we may wish to consider the
theorem interesting or introduce a definition for the expression.
. . .

A more stable criterion may be this: A formula which is
short but but can be proved only by long proofs is a “deep”
theorem. [57, p. 259]

Of course, Wang’s proposals here are for judging which theorems to count as impor-
tant, central, or interesting. They do not provide any criterion for which statements,
produced by some successor of his Program II, should be counted as conjectures
and whose theorem-hood should be proved or disproved.

Other criteria for the “interestingness” of a proposition have also been pro-
posed. One might define a statement to be interesting if it inspired mathematical
research resulting in publication. Research leading to publication explained wholly
for psychological or sociological reasons: It could be that a researcher investigates
the truth of some given statement for the same reason that she might pursue a
crossword puzzle, that is, for entertainment, for no scientific reason at all. She
could also pursue the truth of this given statement wholly for the reason that it
involved novel concepts and thus could result in many basic results and a disserta-
tion. A reviewer may recommend publication simply because the publication under
review is mathematically sound and written by a well-known, well-regarded math-
ematician. Ultimate publication is certainly a well-defined criterion—but whether
it accurately captures what mathematicians mean when they say a mathematical
statement is “interesting” is debatable.

What epitomizes mathematical research is that it contributes to the advance-
ment of mathematics. The clearest advances are when our existing mathematical
questions are answered. The determination of the truth-value of an “interesting”
mathematical statement, however interesting-ness is defined, may or may not ad-
vance or answer any of our existing mathematical questions. Hence, the clearest
way to define what to count as a “conjecture” is not in terms of concepts which
may be extrinsic to our mathematical goals, but to define it intrinsically, directly in
terms of our mathematical goals. For the purposes of this paper then, a (research)
conjecture will be defined to be a new mathematical proposition the determination
of whose truth would be relevant to the advancement of our existing mathematical
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questions. (And, henceforth, the term “research conjecture” will be used when the
need arises to unambiguously distinguish this use of the word “conjecture” from
other uses of this word.) G. H. Hardy famously claimed that a mathematician’s
product should be judged by its “beauty” and “seriousness.” He described the
seriousness of a mathematical theorem

in the significance of the mathematical ideas which it connects.
We may say, roughly, that a mathematical idea is “significant”
if it can be connected in a natural and illuminating way, with a
large complex of other mathematical ideas. Thus a serious math-
ematical theorem, a theorem which connects significant ideas, is
likely to lead to important advances in mathematics itself and
even in other sciences. [36, p. 89]

Applied to novel mathematical statements, a conjecture, as here defined, would
have some degree of “seriousness” (as Hardy meant the word).

The mere novelty of a statement cannot be a sufficient condition for conjecture-
hood—it is trivial to produce new statements (or to write a program to produce
them). Being new though is a necessary condition. If a human or program today
conjectured that there are infinitely many twin primes (pairs of primes of the form
p and p + 2), it would not be a contribution to the advancement of mathematics
as this conjecture is already known, discussed and researched—and we would not
credit the human or program with having made the conjecture. A new formula for
the exact number of primes up to n, a new formula for the exact number or even a
bound for any mathematical quantity for which formulas are sought, a proposition
that would imply the existence or non-existence of odd perfect numbers, would all
count as conjectures on this definition. The definition of “conjecture” given here
provides an unambiguous criterion, removed from the vagaries of our psychology
and sociology, and explained immediately with reference to actual mathematical
practice. Among statements which count as conjectures under this definition, there
is a continuum of relevance: these conjectures are certainly not of equal value—
knowledge of the truth-values of some of them will answer or advance more of
our mathematical questions than others. (Similarly, with Hardy’s criterion for the
“seriousness” of a mathematical theorem, there is a continuum of seriousness—some
theorems connect more mathematical ideas than others.)

The first program that did make research conjectures was Siemion Fajtlowicz’s
Grafitti which initially appeared in the mid-1980s. One major difference between
this program and the preceding attempts to automate conjecture-making was that
the statements produced by this program were, by design, likely to be bounds for
invariants for which mathematicians seek and publish bounds. The most successful
of these programs to date are those which are similarly likely to produce state-
ments which address some existing mathematical problem. This principle is almost
certainly central to the design of successful conjecture-making programs.

2. Wang’s Program II and Lenat’s AM

In 1959 Wang, better known for his early research in the automation of theorem-
proving, was the first person to attempt to program a machine to make conjectures.
Wang’s main research interest was in automated theorem-proving: his best-known
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achievement was a program that could prove all the theorems in the first five chap-
ters of Russell and Whitehead’s Principia Mathematica. But he also wrote a pro-
gram, his Program II, to produce statements in the language of propositional logic.
[57]

Wang began: “A natural question to ask is ‘Even though the machine can prove
theorems, can it select the theorems to be proved?’ ” [57, p. 249] He believed this
question could be answered in the affirmative and then went on to explain his
approach.

A very crude experiment in this direction was made with some
quite preliminary results. These will be reported here, not for
their intrinsic interest but for suggesting further attempts on
the same line. The motive is quite simple: by including suitable
principles of triviality, the machine will only select and print
out less trivial theorems. These may in turn suggest further
principles of triviality; after a certain stage, one would either
arrive at essentially the same theorems which have already been
discovered and considered interesting, or find in addition a whole
crowd of interesting new theorems. [57, p. 249]

Wang identified a central issue in the automation of conjecture-making: how
the program should select statements to output among the possible statements in
the language of some area of mathematics.

Wang first restricted the output of his program to statements essentially of the
following two propositional schemata: “If P then Q,” and “P and Q,” where P and
Q were placeholders for propositions involving a small, fixed number of propositional
constants and logical connectives. Wang implemented two “principles of triviality.”
First, his program culled from the stream of statements those where either P or
Q was a theorem. The program also culled those where P and Q were the same.
The statements that passed these triviality tests were then checked for truth (which
could be done in this case as there is a complete proof procedure for propositional
logic). Only true statements were produced.

Wang reported that his program produced 14,000 nontrivial statements, 1,000
of which were actually theorems and stored. [57, p. 246] He published several dozen
of these statements. One example1 is:

[(P ∧Q) ∧R]→ [(P → R)↔ P ].

His idea seemed to be that one criterion of interesting mathematical statements
is that they are not trivially true. This was the lone criterion he implemented
for culling the stream of candiadate conjectures: his program produced so many
statements satisfying his criterion that he had to halt the operation of his program.
[57, p. 250] Wang did not identify any of the produced statements to be actually
“interesting”, however he meant the word. It is hard to imagine any interesting,
new statements in the language of propositional logic. Wang’s work should be
viewed as an experiment which was intended to be extended to “more advanced
domains.”

1This statement has been translated from the second listed statement on [57, p. 261] from
the special language Wang implemented to a more familiar one.
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While his Program II did not produce any (research) conjectures, Wang should
be credited for his vision and being the first to identify and attempt to address a
central problem in the field of automated mathematical conjecture-making.

The next programs which might be described as an attempt to automate
mathematical conjecture-making is Douglas Lenat’s AM and its successor Eurisko.
[43, 45, 46, 47, 48, 49, 47, 51, 50, 52] Lenat first reported on this research in
the mid-1970s.

AM and Eurisko have been both highly lauded and the subject of various con-
troversies [55, 56, 42]. Lenat reported that his programs produced a number of
mathematical statements, including such venerable conjectures and theorems as
Goldbach’s Conjecture and the Unique Factorization Theorem. The only point rel-
evant here though is uncontroversial: Lenat’s programs never made any (research)
conjectures. None appear in his papers and he reported that “AM was not able to
discover any ‘new-to-mankind’ mathematics purely on its own . . . .” [43, p. 6]

Since the earliest days of Artificial Intelligence research, there has been an (often
contentious) split between researchers who are interested in the automation (by any
means possible) of abilities normally taken to require intelligence, and researchers
interested in building machines to “simulate” intelligent human behaviors (and
thereby learn something about human psychology). This division appeared in the
late-1950s among researchers in automated theorem proving. Newell, Shaw and
Simon wrote a program, LT, which was able to prove 38 of the more than 200
propositional logic theorems of Russell and Whitehead’s Principia. [53, p. 112] It
was unable to prove the remaining theorems. LT was designed to simulate how
humans prove these theorems: “[W]e wish to understand how a mathematician, for
example, is able to prove a theorem even though he does not know when he starts
how, or if, he is going to succeeed.” [53, p. 109] Shortly thereafter, Wang wrote
his Program I which proved all the aforementioned theorems as well as those of
other logical forms and did so relatively quickly. [57] Wang’s program exhibited a
behavior that we ordinarily take to require intelligence—although simulating human
intelligence was not his goal, and whether or not it did was not his concern.

Lenat’s programs are best judged as attempts at simulating the production
of mathematical conjectures. Lenat, like Newell, Shaw and Simon, was interested
in the implications of his work for understanding human psycholgy. Lenat, in
his dissertation describing AM, proposed several measures for evaluating the per-
formance of this program. [43, pp. 124-125] These include strictly mathematical
measures such as the program’s original contributions to mathematical research
as well as measures best described as psychological, including the implications of
his program’s performance for how to do math. Assessing the extra-mathematical
value of his work is outside the scope of this paper. The value of his research
on the automation of conjecture-making is minimal: his programs did not make
any (research) conjectures and subsequent work has shown that the design features
he considered necessary in conjecture-making programs (such as large numbers of
heuristics) are not, in fact, necessary. Kenneth Hasse’s Cyrano (an attempt to reim-
plement Lenat’s AM) [40] and Susan Epstein’s Graph Theorist (GT) [17, 18, 19]
are also best described as aiming to “simulate” human conjecture-making. Neither
of these programs produced any (research) conjectures. [42]
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3. Fajtlowicz’s Graffiti

Graffiti, a program conceived by Fajtlowicz at the University of Houston (and
developed, from 1990 to 1993, with Ermelinda DeLaVina), was the first program
to have actually made (research) conjectures. While the first paper on this pro-
gram appeared more than fifteen years ago, the ideas underlying Fajtlowicz’s work
remain largely unknown. In particular, no attempts have been made to implement
Graffiti’s heuristics, whether in mathematical conjecture-making programs or in
other domains where they could be of use. Fajtlowicz’s program was first described
in his series of papers, “On Conjectures of Graffiti.”

The statements Graffiti has produced are largely novel. Since the 1980s, Fa-
jtlowicz has maintained a list Written on the Wall (WoW) of hundreds of these
statements (WoW was originally distributed to interested researchers by regular
mail, and then email, but can now be found on the WWW2). Many of these state-
ments are explicit bounds for quantities for which bounds are desired; others imply
bounds. Mathematicians have published numerous papers on bounds for various
graph-theoretic quantities (invariants), for instance, the independence number of a
graph; Graffiti’s statements have provided new bounds for many of these quantities
and thus these statements are (research) conjectures.

While it is not relevant to the determination of whether or not Graffiti’s state-
ments count as conjectures (that is, that the statements it produced satisfy the
criteria for conjecture-hood, as defined here), it is still worth noting that Graf-
fiti’s statements have inspired research by numerous mathematicians. There are
numerous papers, theses, and dissertations in which these statements (or weaker
or stronger variants) are proved or disproved.3 Graffiti has proved to be a gen-
uine contributor to the advance of mathematics: its collaborators include such
well-known graph theorists as Noga Alon, Bela Bollobas, Fan Chung, Paul Erdös,
Jerry Griggs, Daniel Kleitman, Laszlo Lovasz, Paul Seymour and Joel Spencer.
[3, 14, 20, 21, 34, 41, among others]

Graffiti’s first conjectures were in the field of graph theory. Its underlying
ideas, as described in Fajtlowicz’s papers [23, 25, 27, in particular], apply not
just to graphs: Graffiti has also made conjectures in geometry, number theory,
and chemistry—conjectures about the structure of fullerenes (as represented by
their graphs) have already led to papers by, among others, the fullerene expert
Patrick Fowler. [33, 29, 30] One of Graffiti’s conjectures led to the discovery, by
Fajtlowicz and this author, that the minimization of the independence number of
a fullerene is the best known predictor of its stability. [30] Graffiti’s machinery
can be applied to make conjectures about any objects, mathematical or otherwise,
that can be represented by a computer—that is, its fundamental ideas are domain
independent.

The ideas underlying Graffiti’s operation are spread across several of Fajtlow-
icz’s papers and tersely described. The following description of the design and
operation of this program is meant to collect these ideas and provide sufficient
elaboration that interested researchers can implement them. This description has
benefitted from numerous discussions with Fajtlowicz.

2WoW, as well as a list of conjectures about fullerenes, can be found on the WWW at:
math.uh.edu/˜clarson. A list of conjectures about benzenoids is available at Fajtlowicz’s home
page: math.uh.edu/˜siemion

3A partial list can be found on the WWW at: cms.dt.uh.edu/faculty/delavinae/wowref.html.
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Suppose conjectures about objects of a given type are desired, and that repre-
sentations of some number of these objects (call them O1, O2, . . . , On) are stored
in the computer’s memory. An invariant of these objects is a function which asso-
ciates a number to each of the objects (and is necessarily independent of how the
objects are represented to the machine). Let α1, α2, . . . , αr be computable invari-
ants (for a given object O, αi = αi(O)). Let f1, f2, . . . , fs represent operations of
some algebraic system (these might include, for instance, the ordinary arithmetic
operators “plus,” “times,” &c., or any other unary, binary or n-ary operators.) Any
term, for instance, f(α1, α2), represents a new numerical invariant. (If “plus” is an
operation, then α1 + α2 is a term—representing a new invariant). Statements can
then be formed from relations of these terms. If t and s are two such terms, the
expression t ≤ s—which should be interpreted as the statement, “For every object
O (of the type of object under consideration), t(O) ≤ s(O)”—is a candidate for a
conjecture.

A computer can produce an endless stream of such expressions. The idea of
Graffiti is to cull conjectures from this stream. This problem, discussed already
by Poincaré4 and first addressed by Wang, was redressed by Fajtlowicz—the initial
version of Graffiti, like Wang’s Program II, produced thousands of statements.
Fajtlowicz wrote, regarding this first version of his program,

The number of conjectures, particularly those that are com-
pletely trivial, is the main problem and more than half of the pro-
gram consists of various heuristics whose purpose is deletion of
trivial and otherwise noninteresting but true conjectures.5 [23,
p. 113]

Suppose conjectured upper bounds of the invariant t are desired, that is, con-
jectures of the form t ≤ s. They are to be culled from the stream of relations t ≤ s1,
t ≤ s2, t ≤ s3, &c. Two heuristics are typically used in this task.

Dalmatian is Fajtlowicz’s name for Graffiti’s main heuristic for culling the
stream of candidate conjectures. [27, pp. 370-371] Given a statement of the form
t ≤ s and a (possibly empty) database of pre-existing conjectures of similar form,
t ≤ u1, t ≤ u2, . . . , t ≤ ul—the Dalmatian heuristic checks if the statement
“s(O) < u1(O) and s(O) < u2(O) and . . . and s(O) < ul(O)” is true for at least
one of the objects O from the set O1, . . . , On. That is, it checks if there is an object
for which the value of the candidate upper bound is less than the minimum value
of the existing conjectured upper bounds. If it is, then, with respect to the ob-
jects stored in memory, the relation t ≤ s says something informative—that is, the

4Hadamard writes:

[I]t is obvious that invention or discovery, be it in mathematics or anywhere
else, takes place by combining ideas. Now, there is an extremely great
number of such combinations, most of which are devoid of interest, while,
on the contrary, very few of them can be fruitful. Which ones does our
mind—I mean our conscious mind—perceive? Only the fruitful ones, or
exceptionally, some which could be fruitful.
However, to find these, it has been necessary to construct the very numerous
possible combinations, among which the useful ones are to be found. [35,
pp. 29-30]

Hadamard attributes these ideas to Poincaré.
5Fajtlowicz points out that, with the addition of the Dalmation heuristic, this problem has

been solved.
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relation says something that was not implied by the totality of the previous conjec-
tures of that form that had been kept in the program’s database—so the relation
remains a candidate for Graffiti to add to the database of conjectures. Otherwise,
Graffiti rejects the relation as a possible conjecture—with respect to the databases
of objects and pre-existing conjectures it is uninformative.

The second heuristic, applied to those relations which survive the Dalmatian
heuristic, is to test for the truth of the relation with respect to the stored objects.
If the relation is true of all of these objects then it is added to the database of
conjectures; and if the relation is false for any of these objects then the general
statement that the relation of term functions (the relation of invariants) represents
is false—and the relation is not accepted as a conjecture. These first two heuristics
are the heart of the program and express the following principle of Fajtlowicz: make
the strongest conjecture for which no counterexample is known.

There are two other heuristics which Graffiti can also employ. One is applicable
only when objects of a proper superclass of objects are already stored in the com-
puters memory, the Echo heuristic. [24, p. 190] Suppose the database of objects
includes O1, . . . , Om, Om+1, . . . , On of a type A and conjectures are desired of a
type B, a subclass of A. Suppose the objects of type B are the objects O1, . . . , Om.
The Echo heuristic is used to cull those possible conjectures which are true of each
of the objects Om+1, . . . , On: conjectures which could be true of all objects of type
A—when what is desired are conjectures about its proper subclass B—are not
specific enough and are rejected.

Graffiti’s Beagle heuristic was central to early versions of the program. [25,
pp. 23–24] Its function was largely superseded with the introduction of the Dalma-
tian heuristic. The Beagle heuristic was designed to avoid the endless numbers of
conjectures like α ≤ α+1 where the relation is true but uninformative. The Beagle
heuristic accomplished this by rejecting relations where the related terms (in our
example, α and α + 1) are very “close” to each other in the tree representing all
possible terms: technically, the possible terms form a rooted tree and a distance can
be defined on this tree—if the distance between two terms is too small, the Beagle
heuristic rejects their relation as a possible conjecture. The Dalmatian heuristic
rejects some but not all of these relations: it rejects those relations that are unin-
formative with respect to the existing conjectures and database of objects, but it
makes allowances for certain relations the Beagle heuristic would have rejected—it
will accept those relations that are informative, regardless of the closeness of its
terms.

Graffiti’s conjectures may, naturally, be false. These can be removed by inform-
ing the program of a counterexample, that is, by adding a new representation to the
program’s database of objects. Counterexamples can be found automatically, by
producing representations of objects of the given type and testing the stored con-
jectures against them, or counterexamples can be provided by another intelligent
agent—whether human or another computer.

Graffiti’s operation is sped along by keeping its databases of objects and conjec-
tures relatively small. The program only stores (representations of) objects which
it has found “informative,” that is, which have served as a counterexample to some
previously made conjecture. Graffiti’s database of conjectures is kept relatively
small by eliminating conjectures that are no longer informative. Whenever a new
relation is added to the database of conjectures, it is possible that one or more
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pre-existing relations are no longer informative (with respect to the objects stored
in the computer): if there is an object for which a bound is better than those given
by all the other conjectured bounds then this bound is kept, otherwise it is removed
(as, with respect to the stored objects, it does not improve on the other existing
bounds). Note that this implies that the number of conjectured bounds of a given
form (for instance, upper bounds for a given invariant), stored at a given moment,
can never exceed the number of objects stored at that moment.

The removed bounds may be moved to a secondary database. If a counterex-
ample is later found for one of the relations in the primary database of conjectures,
then those relations in the secondary database are the first to be reconsidered as
candidates for conjectures (that is, as candidates for the primary database) rather
than arbitrarily formed relations. Graffiti’s may been seen as mimicking the brain’s
operation in the sense that our brains do not and cannot store records of all the
specific objects and relations holding between those objects that we encounter and
experience; only some of those objects and relations make an “impression.” Further-
more, another thing that we do is fall back on previously accepted but superseded
beliefs when our present beliefs are proved wrong.

Graffiti has to date been used primarily to generate conjectures about graphs
(a graph is a set of vertices together with a set of edges and an incidence function
mapping edges to pairs of vertices). In this case the objects are graphs—one way to
represent these in a computer is with certain matrices of 0’s and 1’s (the adjacency
matrix of the graph). Numerical invariants for graphs include the independence
number of the graph—the cardinality of the largest set of vertices such that no two
are incident with the same edge. This invariant is of great practical and theoretical
importance. The independence number of a graph cannot be computed efficiently (it
is NP-hard). Researchers use existing upper and lower bounds for both theoretical
and practical purposes. They can be used, for instance, to speed up computation
of this invariant (one way is by using them to prune the recursion tree of the
well-known recursive algorithm for computing the independence number).

Let α represent the independence number of a graph. Then conjectures re-
garding upper bounds of this graph invariant would have the form α ≤ t (where
t is a term function representing some other invariant), and conjectures regarding
lower bounds would have the form t ≤ α. One of the first conjectures Graffiti made
(WoW-2) was

d ≤ α,

where d represents the average distance between distinct vertices of the graph. (This
conjecture was proved by Fan Chung [14] in one of the first papers ever published
about a computer-generated conjecture.) The conjecture was made using a database
of connected graphs (for average distance is not defined for graphs in general) and
should be interpreted as follows: “For every connected graph, the average distance
between any two different vertices is no more than its independence number.”

Among other things, Grafitti’s success demonstrates that conjecture-making
programs neither require huge numbers of heuristics nor domain-specific heuristics—
which disproves Lenat’s contention that programs which can make conjectures in
multiple domains require domain-specific heuristics. [45, p. 288] [49, p. 223] No ver-
sion of Graffiti has employed more than the four aforementioned heuristics—while
making conjectures in graph theory, number theory, and chemistry.
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It is worth noting here that Graffiti-like programs can be used to allow students
to investigate subjects “Texas-style” (that is, using the teaching method made fa-
mous by R. L. Moore at the University of Texas). Fajtlowicz has experimented
with using his program as part of a Texas-style approach to teaching graph theory.
[28, pp. 22–25][54] and with a version of his program that his students can use to
generate conjectures on their own. Students are able to explore Graph Theory by
using the program to produce conjectures; the students then either attempt to prove
or refute the conjectures. Upon refuting a conjecture and informing the program
of a counterexample, the program then produces updated conjectures in response.
DeLaVina has written a partial reimplemention of Graffiti on the Windows plat-
form, Graffiti.pc [16], and has also experimented with using it as a teaching tool.
[16, pp. 28–29]

4. Colton’s HR and Caporossi and Hansen’s AGX

Three other programs have been produced which have attempted to automate
mathematical conjecture-making. One is the unnamed program of Bagai and his
Wichita State colleagues [2]. They reported that their program “rediscovered”
some known theorems in geometry—but did not report that the program produced
any conjectures (which, as defined here, are necessarily new propositions).

In the late 1990s Simon Colton and his colleagues at the University of Edin-
burgh developed the program HR which, among other things, has produced new
mathematical propositions. [5, 6, 15] Colton’s team has attempted to automate all
aspects of mathematical research—including the automation of conjecture-making.

The papers describing HR contain roughly a dozen examples of the mathemat-
ical propositions that the program has produced. The following three propositions
are representative of the reported output of the program and also represent the
three types of new propositions HR has produced.

1. For groups G and G′ up to order 6, G and G′ are isomorphic
if and only if f(G) = f(G′), where the function f is defined as
follows: for any group G,

f(G) = |{(a, b, c) ∈ G3 : a ∗ b = c and b ∗ c = a}|. [6]

2. No perfect number is refactorable6. [15]
3. The refactorable numbers are a subsequence of the sequence
of positive integers congruent to 0, 1, 2, or 4 (mod 8). [15]

These statements are novel and thus satisfy one criterion for conjecture-hood.
Would knowledge of the truth of these statements would advance any of our math-
ematical questions, that is, are they (research) conjectures? While it is possible,
HR’s authors do not claim that they do. HR can be directed to search for a struc-
tural characterization of some class of objects. This is the genesis of the first listed
statement: the program was directed to search for a characterization of these small
groups. Colton does not report any attempt to use HR to find any structural
characterizations that would address any open mathematical problem.

Colton’s HR, like Lenat’s programs AM and Eurisko, can be used to explore
mathematical domains on its own, without direction: they can invent concepts,

6A number n is refactorable if it is divisible by the number of its divisors. This concept was
rediscovered by HR—the numbers were originally called tau numbers.
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find examples and produce new statements relating those concepts and to prove or
disprove them.

A key reason for the conjecture-making success of Fajtlowicz’s Grafitti is that
the program is likely to produce bounds for invariants for which mathematicians
desire bounds. That is, by the very design of the program, it produces statements of
a form that might advance our mathematical goals. Recent versions of the program
allow the user to specify the invariant for which bounds are sought. In earlier
versions of the program though, the produced statements were inequalities between
terms which were functions of the invariants known to the program—and many of
which were invariants for which mathematicians seek bounds. Thus, even for early
versions of the program, where a produced relation may or may not have been an
explicit bound for one of these invariants, it was likely to have produced an implicit
bound.7

One reason that Wang’s Program II did not produce any conjectures is that
his program was not designed to produce statements that are relevant to our ex-
isting mathematical questions and problems. Similarly, Lenat’s programs AM and
Eurisko were not (explicitly, or even implicitly) designed to produce statements
relevant to our existing questions. Colton’s HR too, can be run without direction,
without an eye to our open problems. It is possible that a program not specifically
designed to produce statements relevant to our existing questions might produce
such statements—but it would not be expected—we would expect the production
of such statements to be the exception rather than the norm.

While such programs may produce (research) conjectures and may discover
new theorems, what is ignored that mathematics is a collaborative practice whose
advancement is constantly guided by the results and discoveries and concepts of
our colleagues. Mathematicians do not ordinarily work in total isolation and, when
they do, they would be expected to be much less successful than those aware of the
research and advancement and ideas of their predecessors and colleagues. This also
partly explains the success of Fajtlowicz’s Graffiti: the program does not operate
in isolation—many of the invariants that appear in the statements it produces
are ones for which mathematicians have an existing interest. If the program were
equipped with strictly novel invariants, that is, ones for which there is no existing
mathematical interest for bounds for them, it is difficult to see how the produced
statements would be of any mathematical interest or that the program would have
had the success it has had. In general, it is impossible to say that a program
researching a mathematical domain on its own, uninformed of the concepts that
our existing mathematical problems involve, would not or could not make (research)
conjectures and discoveries. But it would not be expected; to do so it would need to
rediscover the concepts involved in our existing mathematical problems and produce
statements, involving these concepts, that addressed these problems.

The most recent attempt at automating the production of conjectures is a
program due to Gilles Caporossi and Pierre Hansen, colleagues at GERAD. This
project by their work that followed the invention, by Hansen and Mladenović [39],
and development of the Variable Neighborhood Search (VNS) meta-heuristic for
finding objects which are extremal (or near-extremal) with respect to an invariant.
Caporossi, Hansen and various collaborators have used the results of these heuristic

7Fajtlowicz, it should be noted, does not agree with this explanation for the conjecture-
making success of his program.
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searches to make a number of conjectures. Their results are discussed in a number
of publications, the most central of which is their series of papers, “Variable neigh-
borhood search for extremal graphs.” [12, 13, 10, 7, 9, 8, 37, 38] While the idea
behind their VNS heuristic is general, its primary application has been to finding
extremal graphs. VNS search is one of the features implemented in their program
AutoGraphiX (AGX) for graph-theoretic research. (Caporossi is responsible for the
actual development of the program). The program also incorporates techniques for
automating conjectures. They first discussed these techniques in 1999 [11]. The
most complete discussion is in [13].

Caporossi and Hansen’s papers contain roughly 50 conjectures that are con-
nected to their use of AGX. In some instances, they have used their program to
find graphs which are extremal with respect to one parameter (with constraints on
one or more other parameters). They then plot the values of this parameter against
values of the constrained parameters for these extremal graphs. It may then be the
case that there is a clear relationship between these parameters which suggests
a conjecture. In this way, for example, they searched for graphs with minimum
energy8 E while constraining variously the number of vertices n and the number
of edges m of the graphs. Visualizing the relationships between these parameters,
patterns emerged and suggested conjectures such as the following:

E ≥ 2
√
m

E ≥ 4m
n

E ≥ 2
√
n− 1 [7, p. 990]

In other cases, rather than use AGX to produce the data on which they base
their own conjectures, the program produces conjectures on its own. In one clearly
attributed example, they set AGX to find color-contrained trees with minimal in-
dex.9 AGX found the following relationship:

2α−m− n1 + 2r −D = 0, [13]

where α is the independence number of the graph, m is its number of edges, n1 is
its number of pendant vertices, r is the radius, and D is the diameter.

Caporossi and Hansen have proposed two techniques for the automation of
mathematical conjecture-making as well as one for automatedly strengthening ex-
isting conjectures (or theorems). Perhaps 12 of the 50 conjectures produced with the
use of AGX were automatedly produced. In most instances Caporossi and Hansen
are not clear about the genesis of the conjectures they report—which makes it
difficult to evaluate the success of AGX’s conjecture-making heuristics.

The first method they propose is AGX’s numeric method. This is the method
used to produce the aforementioned relation for color-constrained trees. The idea
underlying this method is to find some number of examples of objects of a specified
class—for instance, color-constrained trees with minimal index—and values of some

8The energy of a graph is defined to be the sum of the absolute values of its eigenvalues (of
the eigenvalues of its adjacency matrix).

9Trees are connected bipartite graphs and thus have a unique bipartition (A,B). Color-
constrained trees are classes of trees where |A| and |B| are fixed. The index of a graph is its
largest eigenvalue (the largest eigenvalue of its adjacency matrix).
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number of invariants x1, x2, . . . , xn for these objects. They then find a basis of all
affine relations, that is, relations of the form

a1x1 + a2x2 + . . .+ anxn = b,

where the ai’s and b are constants. Should any affine relations be found, they hold
for the considered objects and, it is then conjectured, the relations hold for all the
objects of the specified class.

AGX does not seem to have produced many conjectures using its numeric
method—but this is also not terribly surprising. At least for the case of graphs,
affine relations of graph invariants are relatively rare in the literature.

The second method AGX is equipped with for automatedly producing conjec-
tures is its geometric method. Here some examples of objects of a specified class
are considered, together with values of some number of invariants x1, x2, . . . , xn
for these objects. AGX then computes

the convex hull of the corresponding points in the p-space of
invariant values. Then each facet of the convex hull provides a
conjecture of the form a1x1 + a2x2 + . . . + anxn ≥ b where the
aj and b are constants.

Caporossi and Hansen report that, applying the geometric approach to find bounds
on the Randic index10 R for the class of graphs with maximum degree four, in terms
of the number of edges m of the graph and number of pendant vertices n1, AGX
found that

R ≥ 1
4

(n1 +m).

This inequality holds for the graphs the program considered and is conjectured to
be true for all graphs of maximum degree four.

AGX’s geometric method for finding conjectures does not have the limitation
of its numerical method—that affine relations between graph invariants are rare.
It would seem that AGX should be extremely prolific using its geometric method
of conjecture production. Yet AGX seems to have produced only a few conjectures
using this method. There are a limitless number of classes of graphs and invariants
for which bounds are desired with respect to those classes. What would be of great
scientific value in demonstrating the utility of this approach is lists of conjectures
produced by the program using AGX’s geometric method in those cases of obvious
interest to graph theorists, say, for instance, in finding bounds for NP-hard invari-
ants. This would give a much better indication of what to expect using this method
to automate the production of conjectures.

AGX’s algebraic method for strengthening conjectures and theorems begins
with an existing inequality, having the form t ≥ 0, about the relations between
the invariants of some class of objects (this relation may be a conjectured one or
a theorem). t is some function of primitive invariants x1, x2, . . . , xn. AGX first
searches for examples of objects that minimize t. The program would then use a
database of properties of the given class of objects and test if any of these properties
hold for each of the extremal examples that the program has produced (in the case
of graphs, these properties might include being a path, a tree, complete, regular,

10The Randic index is defined to be the sum of the weights of the edges of the graph, where
the weight of an egde vw of the graph, incident to vertices v and w, having degrees d(v) and d(w)

is 1√
d(v)d(w)

.
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a star, &c.). Suppose the extremal objects have property P and that there is a
formula for invariant x for objects having property P . Suppose t is a function of
x (as well as possibly other invariants). Let s be formed by replacing x with the
known formula. Then AGX produces the conjecture t ≥ s.

For instance, beginning with Graffiti’s conjecture that, for all connected graphs,

1 +R− r ≥ 0,

where R is the Randic index and r is the radius of the graph, AGX found that the
graphs which minimize this quantity are paths with two or more vertices. For these
paths it is known that r ≤ bn2 c and that R =

√
2 + n−3

2 . AGX then produced the
strengthened conjecture that, for graphs with two or more vertices,

1 +R− r ≥ 1 +
n− 3

2
+
√

2− bn
2
c, [13]

where n is the order of the graph. Hansen and Caporossi also report that AGX was
automatedly able to in this way strengthen six other conjectures of Graffiti.

Caporossi and Hansen’s methods are, in principle, domain-independent. They
apply to any objects that can be represented to a computer. Graphs happen to be
the specific case they have used in developing their ideas. Their VNS heuristic has
been used with some success—it is clearly a fruitful tool for the investigation of
graphs and other objects. Their ideas for automating conjecture-making are inter-
esting but difficult to evaluate—more examples of clearly attributed, automatedly
produced conjectures are needed in order to evaluate their fecundity and to judge
how well they might serve us in achieving our mathematical goals.

5. Looking Ahead

Research on mathematical conjecture-making is relatively young. Its success-
ful techniques have yet to be extended broadly in mathematical research. But
conjecture-making is a central part of mathematical practice. Thus we envision
a future where conjecture-making programs will be constant collaborators with
mathematicians in all areas of mathematical research, where conjecture-making
programs are as widespread and commonly used as computational and visualiza-
tion environments like Maple and Mathematica are today. Significant steps have
now been made towards this goal.

There are three salient points that researchers interested in the existing litera-
ture on automated mathematical discovery—that is, on developing programs that
actually participate in the advancement of mathematics—should keep in mind.
First, the literature is confusing. There are researchers who share the same vo-
cabulary but not the same goals: researchers who use the terms “conjecture” and
“discovery” in almost unrelated ways, researchers more interested in the computer-
ized “simulation” of various human behaviors more than in the design of programs
having various human abilities, and researchers more interested in designing com-
puters that exhibit various abilities regardless of whether they would be said to
simulate those abilities. Second, Fajtlowicz’s Principle of the Strongest Conjec-
ture, to produce the strongest statement for which no counterexample is known,
has proved to be extremely fecund for finding conjectured bounds of invariants
and is presumably extendable to finding conjectures of other forms. Third, suc-
cessful conjecture-making programs should be designed to produce statements that
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address existing research goals. This stands to reason—a program designed to pro-
duce statements for reasons that are not explicitly mathematical cannot be expected
to produce statements that can contribute to the advancement of mathematics.

One simple idea for extending Fajtlowicz’s Principle of the Strongest Conjec-
ture is for making conjectures about relations between classes of objects, finding
necessary conditions for an object to have some property P , and thus characterizing
the class of objects having property P . Conjectures about the necessary conditions
for an object to have property P have the form, “If an object has property P then
it has property Q”—saying, in other words, that class of objects having property
P is a subclass of the objects having property Q.

Suppose O1, O2, . . . , On are (representations of) objects stored in the com-
puter’s memory. A property of these objects is a function which associates a truth
value (“true” or “false”, 1 or 0) to each object of a given class. Let T1, T2, . . . , Tr
be computable properties (for a given object O, Ti = Ti(O)). Let f1, f2, . . . , fs
represent truth-functional operators (representing “and”, “or”, “if . . . then,” &c.).
Any term, for instance, f(T1, T2) represents a new property. Statements can then
be formed from relations of these terms. Suppose necessary conditions for an object
to have property P are desired. If Q is such a term, the expression P ⊆ Q—which
should be interpreted as the statement, “For every object O (of the type of object
under consideration), if O has property P then O has property Q”—is a candidate
for a conjecture.

The conjectured relations are to be culled from the stream of relations P ⊆ Q1,
P ⊆ Q2, P ⊆ Q3, &c. Given a statement of the form P ⊆ Q and a (possibly
empty) database of pre-existing conjectures of similar form, P ⊆ R1, P ⊆ R2, . . . ,
P ⊆ Rl—the program first checks if the statement “Q ⊂ R1 and Q ⊂ R2 and
. . . and Q ⊂ Rl” is true. That is, check if there is at least one of the objects O from
the set O1, . . . , On for which O does not have property Q but for which it does have
properties R1, R2, &c. (that is, the the class of stored objects having property
Q is a proper subclass of the intersection of the classes having properties Ri). If
so, then, with respect to the objects stored in memory, the relation P ⊆ Q says
something informative—that is, the relation says something that was not implied
by the totality of the previous conjectures of that form that had been kept in the
program’s database. This is Fajtlowicz’s Dalmation heuristic applied in this new
setting.

The truth of the relation with respect to the stored objects would then be
tested. If the relation is true of all of these objects then it is added to the database
of conjectures; and if the relation is false for any of these objects then the general
statement that the relation of term functions represents (a relationship between
classes of objects having certain properties) is false—and the relation is not accepted
as a conjecture. Conjecturing sufficient conditions for an object to have property
P would be similar.

Researchers in Artificial Intelligence have attempted to identify general abilities
that underly intelligent human behavior. The ability to make conjectures would
seem to be a very good candidate for further research.

What follows is a proposal for testing the utility of conjecture-making pro-
grams in the design and construction of machines that interact with the physical
world. Suppose a computer—call it Charly—is connected to a simple mechanical
arm whose range of motion is just vertically up and down and which is equipped
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with an internal clock and exactly two sensors: one indicating that something is
sitting on its “hand,” and a second which reports the relative height of the arm.
Charly’s task is to estimate the weights of objects placed on its hand. The moti-
vating idea here is that a machine can only be equipped with a limited number of
special-purpose sensors—some quantities must be estimated from other data. Here
Charly is equipped with a clock and two sensors—a more elaborate machine will be
equipped with more—and the more it is equipped with the more elaborate will be
the variety and richness of the quantities it can conjecture estimates of and, subse-
quently, use to make decisions about future actions. Ultimately, we would like to
expand Charly’s capabilities without equipping it with specialized mechanisms for
every new task. In particular, we assume its arm is not equipped with a dedicated,
built-in, scale.

Charly might estimate the weight of objects by making conjectures about the
weights of objects and appealing to these conjectures when some new object is
placed on its hand: It represents anything that has triggered its hand sensor for
some length of time uninterruptedly as a “physical object.” It maintains a database
of certain of the physical objects it has encountered: this database consists of a table
pairing each object with three numbers corresponding to the three invariants height ,
time, and weight. Charly has built-in mechanisms for determining the values of the
first two of these. The height of an object is the distance Charly can raise it from
its lowest arm position (using the relative height sensor). The time of an object
is the amount of time it takes Charly to raise the arm to this height (using the
internal clock). Charly has no built-in mechanism for determining the weight of an
object. It can use its database to make and improve a list of conjectures of the form
weight ≤ f(height, time). Charly can use its conjectures to make guesses about
the weights of objects. When Charly makes a guess that is not sufficiently good, it
can be informed of its mistake and the correct weight of the object.

Note that we are in Charly’s shoes—we do not have access to an accurate inter-
nal scale—we make conjectures about weights of objects and use these conjectures
in our judgements: the simplest example would be if we were to be given a lump of
ore to weigh, a balance and a set of accurate weights. We “weigh” the lump in our
hand, perhaps raising and lowering it a few times, and then guess what the first
weight to put on the balance should be. That guess may or may not be correct.

The utility, then, of Charly’s guesses of the weights of objects would best be
measured relative to whatever it uses those guesses for. Perhaps Charly passes the
object on to a catapult which uses Charly’s guess in calcuating how much force to
use to launch it accurately at a barricade. So long as the uses made of Charly’s
guessed weights have outcomes within some tolerance, there is no reason to check
the accuracy of Charly’s measurements.

If Charly is informed of an inaccurate measurement as well as the true weight of
the object and this weight contradicts one or more of its conjectures, it can add the
object to its database of objects, delete the falsified conjectures from the stored list
of conjectures, and then proceed to make new conjectures (and, it is hoped, better
guesses in the future). If Charly demonstrates any success at guessing weights, this
ability can be used as the basis for endowing it with more complex abilities.
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