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Abstract

The independence number of the graph of a fullerene, the size of the largest set of
vertices such that no two are adjacent (corresponding to the largest set of atoms
of the molecule, no pair of which are bonded), appears to be a useful selector
in identifying stable fullerene isomers. The experimentally characterized isomers
with 60, 70 and 76 atoms uniquely minimize this number among the classes of
possible structures with, respectively, 60, 70 and 76 atoms. Other experimentally
characterized isomers also rank extremely low with respect to this invariant. These
findings were initiated by a conjecture of the computer program Graffiti.
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1 Introduction

A conjecture of the conjecture-making program Graffiti [3,4,12] and a feature
of that program for identifying stability sorting patterns led to the observa-
tion that, for the very limited (less than fifty) number of examples of stable
and presumed unstable fullerenes known to the program, the stable isomers
had smaller independence numbers than the unstable ones. It was originally
Graffiti’s Conjecture 899 in [7], that the independence number on an n-atom
fullerene is no more than 7 —2, and its associated stability pattern that led the
first author to make this conjecture. Graffiti can, in principle, make conjec-
tures about invariants of any objects that can be represented by a computer.
The conjectures are of the form of inequalities between functions of invariants.
For fullerenes, the difference between the sides of an inequality (itself an in-
variant) can be sorted by smallest or largest values. When the known stable
fullerenes appear at the top (or bottom) of this list, this difference suggests
itself for investigation [5-7].

Upon announcing the above conjecture at a conference in the Fall of 2001,
Patrick Fowler, while initially very skeptical, later that same day confirmed
that icosahedral Cy is the unique model minimizing its independence number
in the class of mathematically possible classical fullerenes with 60 atoms, and
that C7o(Dsp) is the unique model minimizing this number in the class of 70-
atom isomers [5]. The second author has since computed that stable C7g also
minimizes its independence number in the class of 76-atom isomers and that
the known stable isomers of C7g and Cgy also rank very low with respect to
this invariant—that is, those eight stable, best-characterized (according to [9])
fullerenes rank very low with respect to their independence numbers. We are
not aware of any physical or chemical justifications that would explain these
exceptional statistics.

We will compare this topological invariant with other predictors of fullerene
stability, including the isolated pentagon criteria, the uniformity of hexagonal
environments, and the second moment of the hexagon neighbor signature.

Determining the criteria which distinguish the most stable fullerenes have been
given new impetus by the recent rational synthesis of stable Csy by Scott and
his colleagues [17]. It may one day be possible to synthesize heretofore unseen
fullerenes based on blueprints of isomers predicted to be stable.



2 Predictors of Fullerene Stability

Fullerenes with a wide range of numbers of carbon atoms have been produced
in experiment. Isomers with 60, 70, 76, 78, and 84 atoms have been produced
in sufficient quantity to be characterized by NMR spectroscopy. The term
“stable” is ambiguous, is used to refer alternately to thermodymanic and ki-
netic stability and, less formally, it is applied to those fullerenes that have
actually been observed. These uses of the term are presumably related. For
the purposes of this paper we will refer to those fullerenes that have been pro-
duced in bulk quantity as “stable fullerenes.” These include at least Ceo(11),
C70(D5h), 076(D2)7 078(D3), 078(0211) (2 kinS), 084(D2) and 084(D2d) [9] (IH
the numbering scheme of [9] these are Cgo:1, Cro:1, Crg:1, Crs:1, Crg:2, Crg:3,
Cs4:22 and Cgy:23.) One problem chemists face is characterizing the stable
fullerenes that appear in experiment from the sometimes enormous numbers
of possible isomers. Suppose, for instance, that a certain n-atom fullerene is
produced. Can it be predicted ahead of time what it will be? What rules are
there that can limit the space of possibilities? Another interesting question,
not addressed here, is predicting from which atom classes the stable fullerenes
will come from. Is it likely that there will be stable 100-atom fullerenes? There
has been speculation on how fullerenes “grow”—but the final story has not
yet been told. It will surely relate to this question.

The problem that Curl, Kroto and Smalley faced when they found 60-atom
carbon clusters in their experiments was to identify the structure of these
molecules. They initially proposed a soccer ball structure for the Cigyg molecules
they had produced, but this is only one of 1812 isomers (up to chirality)
consistent with the fullerene hypothesis. Their proposed model has isolated
pentagonal faces, while none of the others do.

Schmalz et al. predicted that structures with isolated pentagons would be more
favorable than ones with abutting pentagons, which could contain “destabiliz-
ing conjugated 8-circuits” [16, p. 206]. Kroto’s name became associated with
this criterion when, shortly thereafter, he proposed his Isolated Pentagon Rule
(IPR), that stable fullerenes will have isolated pentagons [11]. No fullerene
with fewer than 60 atoms can satisfy this criterion. Of the stable fullerenes,
all those with 60 or more atoms have isolated pentagons.

This rule does suffice to characterize both the 60 and 70-atom isomers that
were found—as there are unique isomers in the classes with 60 and 70 atoms
that have isolated pentagons. This rule does not suffice to uniquely character-
ize the fullerenes with 76, 78 or 84 atoms—as there are two 76 atom isomers
with isolated pentagons, five among the 78-atom isomers and 24 among the
84-atom isomers. The rule does, though, greatly reduce the number of possible
structures that must be considered: from 19151 to 2 in the case of 76-atom



isomers, from 24109 to 5 for 78-atom isomers and from 51592 to 24 for 84 atom
isomers. As the number of atoms n increases, the number of n-atom fullerene
isomers increases rapidly—as does the number of isomers with isolated pen-
tagons. If a 100-atom fullerene were to appear in experiment, for instance,
there are 285,914 structures consistent with the fullerene hypothesis—450 of
which have isolated pentagons. If a 120-atom fullerene were to appear in ex-
periment, there are 1,674,171 possible 120-atom isomers, 10,744 of which have
isolated pentagons.

As the isolated pentagon criterion cannot be used to characterize the lower
fullerenes (those with fewer than 60 atoms) and suffices to uniquely identify
candidate structures for only a handful of the higher fullerene classes, chemists
have looked for other rules of thumb to help limit the search in characterizing
those fullerenes that appear in experiment.

Besides steric criteria for stability (the IPR rule), electronic criteria were also
quickly proposed: in particular, that closed shell structures would be more
favorable than open shelled structures (which have a 0.0 HOMO-LUMO gap)
and that structures with larger HOMO-LUMO gaps would be favorable to
those with smaller ones [14]. Cgo(1I},), for instance, has the largest gap among
60-atom isomers. Cro(Dsp,) also has the largest gap in the class of 70-atom
isomers. For other classes, the fullerenes that have been produced often rank
high with respect to this measure (see Table 1), but this criterion is not enough
to uniquely characterize these fullerenes.

Atoms Isomer Number of Isomers | HOMO-LUMO | Rank | Max Min
60 Ceo:1 (1) 1812 0.7566 1 0.7566 | 0.0 (5)
70 C70:1 (Dsp) 8149 0.5293 1 0.5293 | 0.0 (8)
76 C76:1 (D2) 19151 0.3436 11 0.3993 | 0.0 (16)
78 C7s:1 (D3) 24109 0.2532 241 | 0.6333 | 0.0 (2)
C78:3 (Cay) 0.1802 2120
Crg:2 (Cay) 0.3481 13
84 Cs4:22 (D7) 51592 0.3449 24 (2) | 0.6962 | 0.0 (11)
Cs4:23 (Dog) 0.3449 24 (2)
Table 1

HOMO-LUMO data for experimentally produced fullerenes. Rank is by largest value
of HOMO-LUMO. Max and Min are the largest and smallest values within the
corresponding class. The numbers in parentheses record the number of isomers that
share the corresponding rank or value.

Liu et al. proposed that fullerenes that minimized their number p of pentag-



onal adjacencies (that is, the number of pairs of abutting pentagonal faces)
would be favorable [13]. This criterion is clearly a generalization of the isolated
pentagon rule, since, for a fullerene with isolated pentagons, the number of
pentagonal adjacencies is zero. For the lower fullerenes and those few other
classes of isomers without isolated pentagons, this criterion applies while the
isolated pentagon rule does not.

Raghavachari argued that steric strain would be minimized if the environ-
ments of the hexagons were as “uniform” as possible [15]. For instance, the
hexagonal faces of Cgo(I;) all have three neighbors which are hexagons. Using
this criteria, he was able to identify the two 84-atom fullerene isomers which
had been produced in experiment.

This criterion though will be of less utility as the size of the considered
fullerenes increases. In this case there will be large numbers of isomers with 60
hexagons having exactly 5 neighboring faces which are hexagons and § — 70
hexagons where all the neighboring faces are hexagons.

Fowler also proposed a quantitative version of Raghavachari’s criterion. He
considered the second moment of the hexagon neighbor signature, H = 3 k2hy,,
where hy is the number of hexagons with k& hexagonal neighbors. Fowler’s cri-
terion is that fullerenes which minimize H are more likely to be stable than
those that do not [9]. This index is highly selective for those fullerenes that
have been produced in bulk (see Table 2). This index will be minimized by
any fullerene in which no hexagon is adjacent to two pentagons (those where
60 different hexagons have a single pentagonal neighbor). For larger fullerenes,
the number of fullerenes with the minimum hexagon signature will grow very
large. (For 100-atom fullerenes, 38 models—all IPRs—minimize this index).

3 Graph Theoretic Independence and the Separator

The independence number (sometimes called the stability number) of a graph
is the size of the largest set of vertices (or nodes) such that no two are adjacent
(corresponding to the largest set of atoms of the molecule, no pair of which
are bonded). For instance, the independence number of a 5-ring is 2, that of a
6-ring is 3, and that of the truncated icosahedron is 24 (as every vertex belongs
to one of the twelve pentagonal faces and, as each of these faces is contains no
more than 2 members of a largest independent set, the independence number
can be no more than 24 see Fig. 1).

Minimization of this index is often highly selective: it uniquely selects the sta-
ble 60, 70 and 76-atom isomers from their respective classes—and all those
fullerenes that have been produced in bulk rank first or second within their



Atoms Isomer Number of Isomers | H | Rank | Max | Min
60 Ceo:1 (1) 1812 180 1 520 | 180
70 C70:1 (Dsp) 8149 330 1 700 | 330
76 C76:1 (D7) 19151 428 2 776 | 420
78 C7s:1 (D3) 24109 462 4 780 | 450
Crg:3 (Cov) 454 | 2
Cr5:2 (Co) 460 | 3

84 Cs4:22 (Do) 51592 548 | 1(3) | 920 | 548
C34:23 (D2q) 548 | 1 (3)

Table 2

Second Moment of the Hexagon Signature H for experimentally produced fullerenes.
Rank is by largest value of this index. Max and Min are the largest and smallest val-
ues within the corresponding class. The numbers in parentheses record the number
of isomers that share the corresponding rank or value.
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Fig. 1. (a) The truncated icosahedron with pentagons highlighted and (b) with a
24-vertex maximum independent set highlighted.

respective atom classes (see Table 3). That stable fullerenes tend to minimize
their independence numbers is, at present, simply a statistical observation—no
physical or chemical justification has been proposed. Furthermore, this predic-
tor, used alone, will fail to predict the stability of sufficiently large capped nan-
otubes (which are fullerenes), as the independence numbers of these fullerenes
will be larger than that of other isomers having the same number of atoms.

Buckminsterfullerene, it is worth noting, has many 24-element independent
sets, but the one displayed in Fig. 1 plays a special role in the chemistry of
fullerenes and in the non-standard representation of icosahedral Cg [8,2]. This



Atoms Isomer Number of Isomers | Independence Number | Rank | Max | Min
60 Ceo:1 (1) 1812 24 1 28 24
70 C70:1 (Dsp) 8149 29 1 33 29
76 C76:1 (D7) 19151 32 1 36 32
78 C7s:1 (D3) 24109 33 1(3) 37 33
C7s:3 (Cav) 34 2
Cr3:2 (Cay) 33 1(3)

84 Cs4:22 (Do) 51592 36 1(17) | 40 36
C34:23 (D2q) 36 1(17)

Table 3

Independence Number data for experimentally produced fullerenes. Rank is by small-
est value of Independence Number. Maz and Min are the largest and smallest values
within the corresponding class. The numbers in parentheses record the number of
isomers that share the corresponding rank or value.

24-element independent set, in fact, is the unique one (up to isomorphism) in
which every vertex not in the independent set shares an edge with two vertices
in the independent set and, the first author has proved, is the only fullerene
with 60 or more atoms that contains such an independent set [2]. This fact
may relate to the exceptional stability of icosahedral Cyg.

As far as we know, the possible chemical significance of graph-theoretical in-
dependence appears first implicitly in the findings of Taylor, who discovered
that the bromine decoration in CgyBryy determines a maximum independent
set in Cgo [18, pp. 126-7], and then explicitly in the conjectures of Graffiti.
The first author’s presentation on Grafitti’s conjectures at the 1998 DIMACS
Workshop on Discrete Mathematical Chemistry led shortly to [8].

The independence number is, in general, difficult to compute. For those isomer
classes for which we have data, the range of values for this index is very small—
for these classes the difference between the largest and smallest values of the
independence number is never more than five. Nevertheless, the percentage of
models that minimize their independence number is often suprisingly small.
In the case of 100-atom isomers, for instance, there are 450 fullerene IPRs,
only one of which minimizes its independence number (Cy09:321(T"), Fig. 2).
There are exceptions, though, 355 of 14246 74-atom isomers that minimize
their independence number. We do not know for which isomer classes this
invariant will be highly selective.

Another conjecture of Graffiti led the first author to predict that the separator
of a fullerene, the difference between the largest and next largest eigenvalue




Fig. 2. The unique 100-atom IPR isomer with minimum independence number.

of the associated graph (corresponding to the difference in the energy levels of
the two lowest energy m-orbitals in the Hiickel theory) is a selector of fullerene
stability [10].

On its own the separator is not a particularly strong selector—but it is effective
in combination with other selectors (See Table 4). When restricted to the class
of fullerenes with isolated pentagons, for instance, those fullerenes which have
been produced in bulk rank very high.

Fowler has written that there is no known physical or chemical reason that the
separator would be useful in predicting fullerene stability [10, p. 143]. These
orbitals contribute negligibly to the molecules total m-energy. This may be.
Nevertheless, the fact that there is no known existing reason for the satisfaction
of some criterion to be of predictive value does not mean that it is not. It is
just such anomalies that have led to theoretical advances in the past. In fact,
one of the virtues of an automated conjecture-making program is that it may
find simple, interesting conjectures totally overlooked by humans—as Grafitti
already has found such conjectures.

We are indebted to Gunnar Brinkmann’s Fullgen program for producing com-
plete lists of all the mathematically possible fullerenes in each atom class [1].
The second author is responsible for all the computations in this paper. A
longer version of this paper, originally submitted and subsequently shortened
due to length restrictions, discussed the correctness of the computations.



Atoms Isomer Number of Isomers | Separator | Rank | IPR Rank | Max Min
60 Ceo:1 (1) 1812 0.2434 1 1 0.2434 | 0.0907
70 C70:1 (Dsp) 8149 0.1864 269 1 0.2031 | 0.0668
76 C76:1 (D7) 19151 0.1690 1183 2 0.1913 | 0.0633
78 C7s:1 (D3) 24109 0.1588 3714 5 0.1845 | 0.0664
Crs:3 (Cay) 0.1721 134 2
Crs:2 (Coy) 0.1652 | 1399 3

84 Cs4:22 (Do) 51592 0.1666 20 5 0.1721 | 0.0519
C34:23 (D2q) 0.1721 1(2) 1(2)

Table 4

Separator data for experimentally produced fullerenes. Rank is by largest value of
separator. IPR Rank is rank by largest separator among the IPR fullerenes. Max
and Min are the largest and smallest values within the corresponding class. The
numbers in parentheses record the number of isomers that share the corresponding

rank or value.
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